Skip to main content

Fast 3D Reconstruction of the Spine Using User-Defined Splines and a Statistical Articulated Model

  • Conference paper
Advances in Visual Computing (ISVC 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5875))

Included in the following conference series:

Abstract

This paper proposes a method for rapidly reconstructing 3D models of the spine from two planar radiographs. For performing 3D reconstructions, users only have to identify on each radiograph a spline that represents the spine midline. Then, a statistical articulated model of the spine is deformed until it best fits these splines. The articulated model used on this method not only models vertebrae geometry, but their relative location and orientation as well.

The method was tested on 14 radiographic exams of patients for which reconstructions of the spine using a manual identification method where available. Using simulated splines, errors of 2.2±1.3mm were obtained on endplates location, and 4.1±2.1mm on pedicles. Reconstructions by non-expert users show average reconstruction times of 1.5min, and mean errors of 3.4mm for endplates and 4.8mm for pedicles.

These results suggest that the proposed method can be used to reconstruct the human spine in 3D when user interactions have to be minimised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Stokes, I.A.: Three-dimensional terminology of spinal deformity a report presented to the scoliosis research society by the scoliosis research society working group on 3-d terminology of spinal deformity. Spine 19, 236–248 (1994)

    Article  Google Scholar 

  2. Aubin, C.E., Descrimes, J.L., Dansereau, J., Skalli, W., Lavaste, F., Labelle, H.: Geometrical modelling of the spine and thorax for biomechanical analysis of scoliotic deformities using finite element method. Ann. Chir. 49, 749–761 (1995)

    Google Scholar 

  3. Mitton, D., Landry, C., Vron, S., Skalli, W., Lavaste, F., De Guise, J.: 3d reconstruction method from biplanar radiography using non-stereocorresponding points and elastic deformable meshes. Med. Biol. Eng. Comput. 38, 133–139 (2000)

    Article  Google Scholar 

  4. Pomero, V., Mitton, D., Laporte, S., de Guise, J.A., Skalli, W.: Fast accurate stereoradiographic 3d-reconstruction of the spine using a combined geometric and statistic model. Clin. Biomech. 19, 240–247 (2004)

    Article  Google Scholar 

  5. Humbert, L., Guise, J.D., Aubert, B., Godbout, B., Skalli, W.: 3d reconstruction of the spine from biplanar x-rays using parametric models based on transversal and longitudinal inferences. Med. Eng. Phys. (in press, 2009)

    Google Scholar 

  6. Kadoury, S., Cheriet, F., Labelle, H.: Personalized X-Ray 3D Reconstruction of the Scoliotic Spine From Hybrid Statistical and Image-Based Models. IEEE Trans. Med. Imaging (in press, 2009)

    Google Scholar 

  7. Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Geometric variability of the scoliotic spine using statistics on articulated shape models. IEEE Trans. Med. Imaging 27, 557–568 (2008)

    Article  Google Scholar 

  8. Boisvert, J., Cheriet, F., Pennec, X., Labelle, H., Ayache, N.: Articulated spine models for 3-d reconstruction from partial radiographic data. IEEE Trans. Biomed. Eng. 55, 2565–2574 (2008)

    Article  Google Scholar 

  9. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  10. Aubin, C., Dansereau, J., Parent, F., Labelle, H., de Guise, J.A.: Morphometric evaluations of personalised 3d reconstructions and geometric models of the human spine. Med. Biol. Eng. Comput. 35, 611–618 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moura, D.C., Boisvert, J., Barbosa, J.G., Tavares, J.M.R.S. (2009). Fast 3D Reconstruction of the Spine Using User-Defined Splines and a Statistical Articulated Model. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2009. Lecture Notes in Computer Science, vol 5875. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10331-5_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10331-5_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10330-8

  • Online ISBN: 978-3-642-10331-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics