Skip to main content

A Computational Model of Human Table Tennis for Robot Application

  • Conference paper

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Table tennis is a difficult motor skill which requires all basic components of a general motor skill learning system. In order to get a step closer to such a generic approach to the automatic acquisition and refinement of table tennis, we study table tennis from a human motor control point of view. We make use of the basic models of discrete human movement phases, virtual hitting points, and the operational timing hypothesis. Using these components, we create a computational model which is aimed at reproducing human-like behavior. We verify the functionality of this model in a physically realistic simulation of a Barrett WAM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   69.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Acosta, J.J. Rodrigo, J.A. Mendez, G.N. Marchial, and M. Sigut. Ping-pong player prototype. Robotics and Automation magazine, 10:44–52, december 2003.

    Google Scholar 

  2. R.L. Andersson. A robot ping-pong player: experiment in real-time intelligent control. 1988.

    Google Scholar 

  3. J. Billingsley. Robot ping pong. Practical Computing, May 1983.

    Google Scholar 

  4. R.J. Bootsma and P.C.W. van Wieringen. Timing an attacking forehand drive in table tennis. Journal of Experimental Psychology: Human Perception and Performance, 16:21–29, 1990.

    Article  Google Scholar 

  5. H. Cruse, M. Brtiwer, P. Brockfeld, and A. Dress. On the cost functions for the control of the human arm movement. Biological Cybernetics, 62:519–528, 1990.

    Article  Google Scholar 

  6. H. Fassler, H.A. Vasteras, and J.W. Zurich. A robot ping pong player: optimized mechanics, high performance 3d vision, and intelligent sensor control. Robotersysteme, 1990.

    Google Scholar 

  7. J. Hartley. Toshiba porgress towards sensory control in real time. The Industrial robot, 14–1:50–52, 1987.

    Google Scholar 

  8. H. Hashimoto, R Ozaki, K. Asano, and K. Osuka. Development of a ping pong robot system using 7 degrees of freedom direct drive. Industrial applications of Rootics and machine vision, pages 608–615, November 1987.

    Google Scholar 

  9. A.W. Hubbard and C.N. Seng. Visual movements of batters. Research Quaterly, 25, 1954.

    Google Scholar 

  10. R.E. Kaiman. A new approach to linear filtering and prediction problems. Transactions of the ASME-Journal of Basic Engineering, 82(Series D):35–45, 1960.

    Google Scholar 

  11. D.N. Lee and D.S. Young. Visual timing of interceptive action, pages pp. 1–30. Dordrecht, Netherlads: Martinus Nijhoff, 1985.

    Google Scholar 

  12. M. Matsushima, T. Hashimoto, M. Takeuchi, and R Miyazaki. A learning approach to robotic table tennis. IEEE Trans. on Robotics, 21:767–771, August 2005.

    Google Scholar 

  13. F. Miyazaki, M. Matsushima, and M. Takeuchi. Learning to dynamically manipulate: A table tennis robot controls a ball and rallies with a human being. In Advances in Robot Control. Springer, 2005.

    Google Scholar 

  14. M. Ramanantsoa and A. Durey. Towards a stroke contruction model. International Journal of Table Tennis Science, 2:97–114, 1994

    Google Scholar 

  15. R.A. Schmidt and C.A. Wrisberg. Motor Learning and Performance. Human Kinetics, second edition, 2000.

    Google Scholar 

  16. E. Todorov. Optimality principles im sensorimotor control. Nature Neuroscience, 7, 2004.

    Google Scholar 

  17. D.A. Tyldesley and H.T.A. Whiting. Operational timing. Journal of Human Movement Studies, 1:172–177, 1975.

    Google Scholar 

  18. D. Wolpert, C. Miall, and M. Kawato. Internal models in the cerebellum. Trends in Cognitive Science, 2, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mülling, K., Peters, J. (2009). A Computational Model of Human Table Tennis for Robot Application. In: Dillmann, R., Beyerer, J., Stiller, C., Zöllner, J.M., Gindele, T. (eds) Autonome Mobile Systeme 2009. Informatik aktuell. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10284-4_8

Download citation

Publish with us

Policies and ethics