Skip to main content

Biotech Crops and Functional Genomics

  • Chapter
Transgenic Crop Plants

Abstract

The increase in human population, poor performance of crop cultivars under increasingly adverse environmental conditions and a decline in the available land for sustainable crop production are contributing to a shortage of global food supply and increase in its demand. Conventional breeding efforts in crops such as rice over the last three decades have resulted in a doubling of agricultural productivity (Khush 1997). However, for sustained increase in the agricultural productivity, crops which can resist pests, pathogens and tolerate salinity, drought and temperature extremes need to be developed and deployed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Antonio BA, Buell CR, Yamazaki Y, Yap I, Perin C et al (2007) Informatics resources for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics — challenges, progress and prospects. Springer, New York, USA, pp 355–394

    Chapter  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabi-dopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    CAS  PubMed  Google Scholar 

  • Bennett MD, Leitch IJ (2005) Plant DNA C-values database (release 4.0, Oct. 2005): http://www.kew.org/cvalues/

  • Bibikova M, Beumer K, Trautman JK, Carroll D (2003) Enhancing gene targeting with designed zinc finger nucleases. Science 300:764

    Article  CAS  PubMed  Google Scholar 

  • Birch RG (2000) Application of gene transfer to crop improvement. In: O'Brien L, Henry RJ (eds) Transgenic cereals. American Association of Cereal Chemists, Minnesota, USA, pp 267–276

    Google Scholar 

  • Chin HG, Choe MS, Lee SH, Park SH, Koo JC et al (1999) Molecular analysis of rice plants harboring an Ac/Ds transposable element-mediated gene trapping system. Plant J 19:615–623

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Robbins TP, Almeida J, Hudson A, Carpenter R (1989) Consequences and mechanisms of transposition in Antirrhinum majus. In: Berg DE, Howe MM (eds) Mobile DNA. American Society for Microbiology, Washington DC, pp 413–436

    Google Scholar 

  • Curtin SJ, Wang M-B, Watson JM, Roffey P, Blanchard CL et al (2007) RNA silencing and its application in functional genomics. In: Upadhyaya N (ed) Rice functional genomics -challenges, progress and prospects. Springer, New York, USA

    Google Scholar 

  • Das L, Martienssen R (1995) Site-selected transposon mutagenesis at the hcf106 locus in maize. Plant Cell 7:287–294

    Article  CAS  PubMed  Google Scholar 

  • Dunn WB, Bailey NJ, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  • Evans MJ, Smithies O, Capecchi MR (2001) Mouse gene targeting. Nat Med 7:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Feldmann KA (1991) T-DNA insertion mutagenesis in Arabidopsis: mutational spectrum. Plant J 1:71–82

    Article  CAS  Google Scholar 

  • Gerats AG, Huits H, Vrijlandt E, Marana C, Souer E et al (1990) Molecular characterization of a nonautonomous transposable element (dTph1) of petunia. Plant Cell 2:1121–1128

    Article  CAS  PubMed  Google Scholar 

  • Gherbi H, Gallego ME, Jalut N, Lucht JM, Hohn B et al (2001) Homologous recombination in planta is stimulated in the absence of RAD50. EMBO Rep 2:287–291

    Article  CAS  PubMed  Google Scholar 

  • Greco R, Ouwerkerk PB, Taal AJ, Sallaud C, Guiderdoni E et al (2004) Transcription and somatic transposition of the maize En/Spm transposon system in rice. Mol Genet Genom 270:514–523

    Article  CAS  Google Scholar 

  • Guiderdoni E, An G, Yu S-M, Hsing Y-I, Wu C (2007) T-DNA insertion mutants as a resource for functional genomics. In: Upadhyaya NM (ed) Rice functional genomics - challenges, progress and prospects. Springer, New York, USA, pp 182–321

    Google Scholar 

  • Hanin M, Volrath S, Bogucki A, Briker M, Ward E et al (2001) Gene targeting in Arabidopsis. Plant J 28:671–677

    Article  CAS  PubMed  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods for high-throughput gene silencing in plants. Methods 30:289–295

    Article  CAS  PubMed  Google Scholar 

  • Herskowitz I (1987) Functional inactivation of genes by dominant negative mutations. Nature 329:219–222

    Article  CAS  PubMed  Google Scholar 

  • Hieter P, Boguski M (1997) Functional genomics: it's all how you read it. Science 278:601–602

    Article  CAS  PubMed  Google Scholar 

  • Hirochika H, Guiderdoni E, An G, Hsing YI, Eun MY et al (2004) Rice mutant resources for gene discovery. Plant Mol Biol 54:325–334

    Article  CAS  PubMed  Google Scholar 

  • IRGSP (2005) The map-based sequence of the rice genome. Nature 436:793–800

    Article  Google Scholar 

  • Itoh T (2007) Rice genome annotation: beginning of functional genomics. In: Upadhyaya NM (ed) Rice functional genomics - challenges, progress and prospects. Springer, New York, USA, pp 21–30

    Chapter  Google Scholar 

  • James C (2008) Global status of commercialized biotech/GM crops: 2008. ISAAA Brief No 39. ISAAA, Ithaca, NY

    Google Scholar 

  • Johnson AAT, Yu S-M, Tester M (2007) Activation tagging systems in rice. In: Upadhyaya NM (ed) Rice functional genomics - challenges, progress and prospects. Springer, New York, USA, pp 333–353

    Chapter  Google Scholar 

  • Khush GS (1997) Origin, dispersal, cultivation and variation of rice. Plant Mol Biol 35:25–34

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Satoh K, Nagata T, Kawagashira N, Doi K et al (2003) Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 301:376–379

    Article  PubMed  Google Scholar 

  • Kim YG, Cha J, Chandrasegaran S (1996) Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci USA 93:1156–1160

    Article  CAS  PubMed  Google Scholar 

  • Koes R, Souer E, van Houwelingen A, Mur L, Spelt C et al (1995) Targeted gene inactivation in petunia by PCR-based selection of transposon insertion mutants. Proc Natl Acad Sci USA 92:8149–8153

    Article  CAS  PubMed  Google Scholar 

  • Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850

    Article  CAS  PubMed  Google Scholar 

  • Krishnan A, Guiderdoni E, An G, Hsing YI, Han CD et al (2009) Mutant resources in rice for functional genomics of the grasses. Plant Physiol 149:165–170

    Article  CAS  PubMed  Google Scholar 

  • Krysan PJ, Young JC, Sussman MR (1999) T-DNA as an insertional mutagen in Arabidopsis. Plant Cell 11:2283–2290

    Article  CAS  PubMed  Google Scholar 

  • Kumagai MH, Donson J, Della-Cioppa G, Harvey D, Hanley K et al (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci USA 92:1679–1683

    Article  CAS  PubMed  Google Scholar 

  • Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM et al (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580:2442–2450

    Article  CAS  PubMed  Google Scholar 

  • Margis-Pinheiro M, Zhou XR, Zhu QH, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819–833

    Article  CAS  PubMed  Google Scholar 

  • Miki D, Shimamoto K (2004) Simple RNAi vectors for stable and transient suppression of gene function in rice. Plant Cell Physiol 45:490–495

    Article  CAS  PubMed  Google Scholar 

  • Mizukami Y, Huang H, Tudor M, Hu Y, Ma H (1995) Functional domains of the floral regulator AGAMOUS: characterization of the DNA binding domain and analysis of dominant negative mutations. Plant Cell 8:831–845

    Article  Google Scholar 

  • Osborne BI, Wirtz U, Baker B (1995) A system for insertional mutagenesis and chromosomal rearrangement using the Ds transposon and Cre-lox. Plant J 7:687–701

    Article  CAS  PubMed  Google Scholar 

  • Reiss B (2003) Homologous recombination and gene targeting in plant cells. Int Rev Cytol 228:85–139

    Article  CAS  PubMed  Google Scholar 

  • Reiss B, Schubert I, Kopchen K, Wendeler E, Schell J et al (2000) RecA stimulates sister chromatid exchange and the fidelity of double-strand break repair, but not gene targeting, in plants transformed by Agrobacterium. Proc Natl Acad Sci USA 97:3358–3363

    Article  CAS  PubMed  Google Scholar 

  • Sallaud C, Gay C, Larmande P, Bes M, Piffanelli P et al (2004) High throughput T-DNA insertion mutagenesis in rice: a first step towards in silico reverse genetics. Plant J 39:450–464

    Article  CAS  PubMed  Google Scholar 

  • Satoh K, Doi K, Nagata T, Kishimoto N, Suzuki K et al (2007) Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray. PLoS ONE 2:e1235

    Article  PubMed  Google Scholar 

  • Schwab R, Ossowski S, Riester M, Warthmann N, Weigel D (2006) Highly specific gene silencing by artificial microRNAs in Arabidopsis. Plant Cell 18:1121–1133

    Article  CAS  PubMed  Google Scholar 

  • Scofield SR, Huang L, Brandt AS, Gill BS (2005) Development of a virus-induced gene-silencing system for hexaploid wheat and its use in functional analysis of the Lr21-mediated leaf rust resistance pathway. Plant Physiol 138:2165–2173

    Article  CAS  PubMed  Google Scholar 

  • Shaked H, Melamed-Bessudo C, Levy AA (2005) High-frequency gene targeting in Arabidopsis plants expressing the yeast RAD54 gene. Proc Natl Acad Sci USA 102:12265–12269

    Article  CAS  PubMed  Google Scholar 

  • Shalev G, Sitrit Y, Avivi-Ragolski N, Lichtenstein C, Levy AA (1999) Stimulation of homologous recombination in plants by expression of the bacterial resolvase ruvC. Proc Natl Acad Sci USA 96:7398–7402

    Article  CAS  PubMed  Google Scholar 

  • Shaohong Q, Billizzi M, Jeon J-S, Leach J, Ronald P et al (2004) Transposon tagging in rice using a novel Ds element, cre-lox site-specific recombination and an inducible Ac transposase. In: Plant and animal genomes XII conference, San Diego, CA

    Google Scholar 

  • TAGI (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Takahashi H, Hotta Y, Hayashi M, Kawai-Yamada M, Komastu S et al (2005) High throughput metabolome and proteome analysis of transgenic rice plants (Oryza sativa L.). Plant Biotechnol 22:47–60

    CAS  Google Scholar 

  • Tarpley L, Roessner U (2007) Metabolomics: enabling systems-level phenotyping in rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics - challenges, progress and prospects. Springer, New York, USA, pp 91–107

    Chapter  Google Scholar 

  • Terada R, Urawa H, Inagaki Y, Tsugane K, Iida S (2002) Efficient gene targeting by homologous recombination in rice. Nat Biotechnol 20:1030–1034

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya NM, Zhou X-R, Zhu Q-H, Eamens A, Wang M-B et al (2000) Transgenic rice. In: Henry RJ, O'Brien L (eds) Transgenic cereals. American Association of Cereal Chemists, Minnesota, USA, pp 28–87

    Google Scholar 

  • Upadhyaya NM, Zhu QH, Zhou XR, Eamens AL, Hoque MS et al (2006) Dissociation (Ds) constructs, mapped Ds launch pads and a transiently-expressed transposase system suitable for localized insertional mutagenesis in rice. Theor Appl Genet 112:1326–1341

    Article  CAS  PubMed  Google Scholar 

  • van Haaren MJ, Ow DW (1993) Prospects of applying a combination of DNA transposition and site-specific recombination in plants: a strategy for gene identification and cloning. Plant Mol Biol 23:525–533

    Article  PubMed  Google Scholar 

  • Walbot V (1992) Strategies for mutagenesis and gene cloning using transposon tagging and T-DNA insertional mutagenesis. Annu Rev Plant Physiol Plant Mol Biol 43:49–82

    Article  CAS  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defence against viruses. Nature 411:834–842

    Article  CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  CAS  PubMed  Google Scholar 

  • Wright DA, Townsend JA, Winfrey RJ, Irwin PA, Rajagopal J et al (2005) High-frequency homologous recombination in plants mediated by zinc-finger nucleases. Plant J 44:693–705

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Hu S, Wang J, Wong G, Li S et al (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79–92

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Wang J, Lin W, Li S, Li H et al (2005) The genomes of Oryza sativa: a history of duplications. PLoS Biol 3:e38

    Article  PubMed  Google Scholar 

  • Zhu QH, Hoque MS, Dennis ES, Upadhyaya NM (2003) Ds tagging of BRANCHED FLORET-LESS 1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol 3:6

    Article  PubMed  Google Scholar 

  • Zhu Q-H, Eun MY, Han C-D, Kumar CS, Pereira A et al (2007) Transposon insertional mutants: a resource for rice functional genomics. In: Upadhyaya NM (ed) Rice functional genomics -challenges, progress and prospects. Springer, New York, USA, pp 223–271

    Chapter  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Dr. Jake Jacobsen for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narayana M. Upadhyaya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Upadhyaya, N.M., Pereira, A., Watson, J.M. (2010). Biotech Crops and Functional Genomics. In: Kole, C., Michler, C.H., Abbott, A.G., Hall, T.C. (eds) Transgenic Crop Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04812-8_10

Download citation

Publish with us

Policies and ethics