Skip to main content

Pattern Analysis of Dermoscopic Images Based on FSCM Color Markov Random Fields

  • Conference paper
Advanced Concepts for Intelligent Vision Systems (ACIVS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5807))

Abstract

In this paper a method for pattern analysis in dermoscopic images of abnormally pigmented skin (melanocytic lesions) is presented. In order to diagnose a possible skin cancer, physicians assess the lesion according to different rules. The new trend in Dermatology is to classify the lesion by means of pattern irregularity. In order to analyze the pattern turbulence, lesions ought to be segmented into single pattern regions. Our classification method, when applied on overlapping lesion patches, provides a pattern chart that could ultimately allow for in-region single-texture turbulence analysis. Due to the color-textured appearance of these patterns, we present a novel method based on a Finite Symmetric Conditional Model (FSCM) Markov Random Field (MRF) color extension for the characterization and discrimination of pattern samples. Our classification success rate rises to 86%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stolz, W., Braun-Falco, O., Bilek, P., Landthaler, M., Burgdorf, W.H.C., Cognetta, A.B.: Color Atlas of Dermatoscopy. Blackwell Wissenschafts-Verlag, Berlin (2002)

    Google ScholarĀ 

  2. Westerhoff, K., McCarthy, W.H., Menzies, S.W.: Increase in the sensitivity for melanoma diagnosis by primary care physicians using skin surface microscopy. British Journal of DermatologyĀ 143(5), 1016ā€“1020 (2000)

    ArticleĀ  Google ScholarĀ 

  3. Binder, M., Kittler, H., Seeber, A., Steiner, A., Pehamberger, H., Wolff, K.: Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network. Melanoma ResearchĀ 8(3), 261ā€“266 (1998)

    ArticleĀ  Google ScholarĀ 

  4. Schmidt, P.: Segmentation of digitized dermatoscopic images by two-dimensional color clustering. IEEE Transactions on Medical ImagingĀ 18(2), 164ā€“171 (1999)

    ArticleĀ  Google ScholarĀ 

  5. Schmid-Saugeon, P., Guillod, J., Thiran, J.P.: Towards a computer-aided diagnosis system for pigmented skin lesions. Computerized Medical Imaging and GraphicsĀ 27(1), 65ā€“78 (2003)

    ArticleĀ  Google ScholarĀ 

  6. Stoecker, W.V., Li, W.W., Moss, R.H.: Automatic detection of asymmetry in skin tumors. Computerized Medical Imaging and GraphicsĀ 16(3), 191ā€“197 (1992)

    ArticleĀ  Google ScholarĀ 

  7. Erkol, B., Moss, R.H., Stanley, R.J., Stoecker, W.V., Hvatum, E.: Automatic lesion boundary detection in dermoscopy images using gradient vector flow snakes. Skin Research and TechnologyĀ 11(1), 17ā€“26 (2005)

    ArticleĀ  Google ScholarĀ 

  8. Lee, T.K., Claridge, E.: Predictive power of irregular border shapes for malignant melanomas. Skin Research and TechnologyĀ 11(1), 1ā€“8 (2005)

    ArticleĀ  Google ScholarĀ 

  9. Grana, C., Pellacani, G., Cucchiara, R., Seidenari, S.: A new algorithm for border description of polarized light surface microscopic images of pigmented skin lesions. IEEE Transactions on Medical ImagingĀ 22(8), 959ā€“964 (2003)

    ArticleĀ  Google ScholarĀ 

  10. Golston, J.E., Moss, R.H., Stoecker, W.V.: Boundary detection in skin tumor images: An overall approach and a radial search algorithm. Pattern RecognitionĀ 23(11), 1235ā€“1247 (1990)

    ArticleĀ  Google ScholarĀ 

  11. Stanley, R.J., Moss, R.H., Stoecker, W.V., Aggawal, C.: A fuzzy-based histogram analysis technique for skin lesion discrimination in dermatology clinical images. Computerized Medical Imaging and GraphicsĀ 27(5), 387ā€“396 (2003)

    ArticleĀ  Google ScholarĀ 

  12. Tommasi, T., Torre, E.L., Caputo, B.: Melanoma recognition using representative and discriminative kernel classifiers. In: Beichel, R.R., Sonka, M. (eds.) CVAMIA 2006. LNCS, vol.Ā 4241, pp. 1ā€“12. Springer, Heidelberg (2006)

    ChapterĀ  Google ScholarĀ 

  13. Tanaka, T., Torii, S., Kabuta, I., Shimizu, K., Tanaka, M.: Pattern classification of nevus with texture analysis. IEEJ Transactions on Electrical and Electronic EngineeringĀ 3(1), 143ā€“150 (2008)

    ArticleĀ  Google ScholarĀ 

  14. Serrano, C., Acha, B.: Pattern analysis of dermoscopic images based on markov random fields. Pattern RecognitionĀ 42(6), 1052ā€“1057 (2009)

    ArticleĀ  Google ScholarĀ 

  15. Panjwani, D., Healey, G.: Results using random field models for the segmentation of color images of natural scenes, pp. 714ā€“719 (1995)

    Google ScholarĀ 

  16. Kato, Z., Pong, T.C.: A markov random field image segmentation model for color textured images. Image and Vision ComputingĀ 24(10), 1103ā€“1114 (2006)

    ArticleĀ  Google ScholarĀ 

  17. Tab, F.A., Naghdy, G., Mertins, A.: Scalable multiresolution color image segmentation. Signal ProcessingĀ 86(7), 1670ā€“1687 (2006)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  18. Gao, J., Zhang, J., Fleming, M.G., Pollak, I., Cognetta, A.B.: Segmentation of dermatoscopic images by stabilized inverse diffusion equations, vol.Ā 3, pp. 823ā€“827 (1998)

    Google ScholarĀ 

  19. Li, S.Z.: Markov Random Field Modeling in Image Analysis. Springer, Tokyo (2001)

    BookĀ  MATHĀ  Google ScholarĀ 

  20. Xia, Y., Feng, D., Zhao, R.: Adaptive segmentation of textured images by using the coupled markov random field model. IEEE Transactions on Image ProcessingĀ 15(11), 3559ā€“3566 (2006)

    ArticleĀ  Google ScholarĀ 

  21. Kashyap, R.L., Chellappa, R.: Estimation and choice of neighbors in spatial-interaction models of images. IEEE Transactions on Information TheoryĀ IT-29(1), 60ā€“72 (1983)

    ArticleĀ  MATHĀ  Google ScholarĀ 

  22. Chen, Y., Hao, P.: Optimal transform in perceptually uniform color space and its application in image retrieval, vol.Ā 2, pp. 1107ā€“1110 (2004)

    Google ScholarĀ 

  23. Manjunath, B.S., Simchony, T., Chellappa, R.: Stochastic and deterministic networks for texture segmentation. IEEE Transactions on Acoustics, Speech, and Signal ProcessingĀ 38(6), 1039ā€“1049 (1990)

    ArticleĀ  Google ScholarĀ 

  24. Manjunath, B.S., Chellappa, R.: Unsupervised texture segmentation using markov random field models. IEEE Transactions on Pattern Analysis and Machine IntelligenceĀ 13(5), 478ā€“482 (1991)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mendoza, C.S., Serrano, C., Acha, B. (2009). Pattern Analysis of Dermoscopic Images Based on FSCM Color Markov Random Fields. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04697-1_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04697-1_63

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04696-4

  • Online ISBN: 978-3-642-04697-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics