Skip to main content

Heat Transfer in Low Temperature Micro- and Nanosystems

  • Chapter
  • First Online:

Part of the book series: Topics in Applied Physics ((TAP,volume 118))

Abstract

The study of thermal and thermodynamic properties at the nanoscale requires the development of samples with well controlled small scale structure, but also ultrasensitive and innovative experimental techniques for handling such samples. The challenge is to measure very small amounts of energy, and to control the flow of these energies on very small length scales. Such measurements generally depend on very precise temperature control made possible by ultrasensitive thermometry. From this point of view, electrical measurements afford unique solutions, because they are easily adapted to small scales by exploiting experimental techniques developed to measure electrical resistances. With the help of technologies transferred from micro- and nanoelectronics, devices and sensors can be designed to measure the physical properties of small systems. In this chapter, we begin by calculating the thermodynamic properties expected for condensed matter at low temperatures. The temperature dependence of the specific heat and the thermal conductivity are calculated for each type of heat carrier, viz., phonons and electrons. Special attention is paid to the specificities of low-dimensional systems: quantum effects on the thermal conductance and the heat capacity. We then describe the experimental aspects (techniques and instrumentation), by reviewing the various solutions available in thermometry, and methods for measuring the specific heat and thermal conductivity, in either steady state or dynamical contexts. We will see how to apply each technique on the submicron scale, illustrating with different suspended systems in the case of membranes and nanowires.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.W. Ashcroft and N.D. Mermin: Solid State Physics (Saunders College Publishing, New York, 1976)

    Google Scholar 

  2. H.M. Rosenberg: Low Temperature Solid State Physics (Clarendon Press, Oxford, 1963)

    Google Scholar 

  3. F. Pobell: Matter and Methods at Low Temperatures (Springer-Verlag, Berlin, 1992)

    Google Scholar 

  4. J.M. Ziman: Electrons and Phonons (Clarendon Press, Oxford, 2001)

    Book  MATH  Google Scholar 

  5. E.S.R. Gopal: Specific Heats at Low Temperatures (Clarendon Press, Oxford, 2001)

    Google Scholar 

  6. A. Tari: Specific Heat of Matter at Low Temperatures (Imperial College Press, London, 2003)

    Book  Google Scholar 

  7. G. Chen: Nanoscale Energy Transport and Conversion (University Press, Oxford, 2005)

    Google Scholar 

  8. B. Diu, C. Guthmann, D. Lederer, B. Roulet: Physique Statistique (Hermann Editeurs, Paris, 2001)

    Google Scholar 

  9. D.V. Anghel, J.P. Pekola, M.M. Leivo, J.K. Suoknuuti, and M. Manninen: Phys. Rev. Lett. 81, 2958 (1998)

    Article  ADS  Google Scholar 

  10. J. Hone, B. Batlogg, Z. Benes, A.T. Johnson, and J.E. Fischer: Science 289, 1730 (2000)

    Article  ADS  Google Scholar 

  11. A. Gusso and L.G.C. Rego: Phys. Rev. B 75, 045320 (2007)

    Article  ADS  Google Scholar 

  12. W. Yi, L. Lu, Z. Dian Lin, Z.P. Pan, and S.S. Xie: Phys. Rev. B 59, R9015 (1999)

    Article  ADS  Google Scholar 

  13. L.X. Benedict, S.G. Louie, and M.L. Cohen: Solid State Commun. 100, 177 (1996)

    Article  ADS  Google Scholar 

  14. K.S. Yi, D. Kim, and K.-S. Parks: Phys. Rev. B 76, 115410 (2007)

    Article  ADS  Google Scholar 

  15. W. Schottky: Phys. Z 23, 448 (1922)

    Google Scholar 

  16. D.H. Santamore and M.C. Cross: Phys. Rev. Lett. 87, 115502 (2001)

    Article  ADS  Google Scholar 

  17. O. Bourgeois, T. Fournier, and J. Chaussy: J. Appl. Phys. 101, 016104 (2007)

    Article  ADS  Google Scholar 

  18. E.T. Swartz and R.O. Pohl: Rev. Pod. Phys. 61, 605 (1989)

    ADS  Google Scholar 

  19. L.G.C. Rego and G. Kirczenow: Phys. Rev. Lett. 81, 232 (1998)

    Article  ADS  Google Scholar 

  20. K. Schwab, E.A. Henriksen, J.M. Worlock, M.L. Roukes: Nature 404, 974 (2000)

    Article  ADS  Google Scholar 

  21. J.B. Pendry: J. Phys. 16, 2161 (1983)

    MathSciNet  ADS  Google Scholar 

  22. R. Maynard and E. Akkermans: Phys. Rev. B 32, 5440 (1985)

    Article  ADS  Google Scholar 

  23. B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, C.T. Foxon: Phys. Rev. Lett. 60, 848 (1988)

    Article  ADS  Google Scholar 

  24. N. Nishiguchi, Y. Ando, M.N. Wybourne: J. Phys. Condens. Matter 9, 5751 (1997)

    Article  ADS  Google Scholar 

  25. D.W. Denlinger, E.N. Abarra, K. Allen, P.W. Rooney, M.T. Messer, S.K. Watson, F. Hellman: Rev. Sci. Instrum. 65, 946 (1994)

    Article  ADS  Google Scholar 

  26. O. Bourgeois, E. André, C. Macovei, and J. Chaussy: Rev. Sci. Instrum. 77, 126108 (2006)

    Article  ADS  Google Scholar 

  27. F. Giazotto, T.T. Heikkila, A. Luukanen, A.M. Savin, J.P. Pekola: Rev. Mod. Phys. 78, 217 (2006)

    Article  ADS  Google Scholar 

  28. M.L. Roukes, M.R. Freeman, R.S. Germain, R.C. Richardson, M.B. Ketchen: Phys. Rev. Lett. 55, 422 (1985)

    Article  ADS  Google Scholar 

  29. M. Hartmann, G. Mahler, O. Hess: Phys. Rev. Lett. 93, 080402 (2004)

    Article  ADS  Google Scholar 

  30. O.M. Corbino: Phys. Z. 11, 413 (1910); ibid. 12, 292 (1911)

    Google Scholar 

  31. P.E. Sullivan, G. Seidel: Phys. Rev. 173, 679 (1968)

    Article  ADS  Google Scholar 

  32. Y. Kraftmakher: Phys. Rep. 356, 1 (2002)

    Article  ADS  Google Scholar 

  33. F. Fominaya, T. Fournier, P. Gandit, and J. Chaussy: Rev. Sci. Instrum. 68, 4191 (1997)

    Article  ADS  Google Scholar 

  34. B. Revaz, B.L. Zink, F. Hellman: Thermochimica Acta 432, 158 (2005)

    Article  Google Scholar 

  35. W. Chung Fon, K.C. Schwab, J.M. Worlock, M.L. Roukes: Nano Lett. 5, 1968 (2005)

    Article  ADS  Google Scholar 

  36. O. Bourgeois, S.E. Skipetrov, F. Ong, J. Chaussy: Phys. Rev. Lett. 94, 057007 (2005)

    Article  ADS  Google Scholar 

  37. F.R. Ong, O. Bourgeois, S.E. Skipetrov, J. Chaussy, S. Popa, J. Mars, and J.-L. Lacoume: Physica C 466, 37 (2007)

    Article  ADS  Google Scholar 

  38. F.R. Ong, O. Bourgeois, S.E. Skipetrov, and J. Chaussy: Phys. Rev. B 71, 140503(R) (2006)

    Google Scholar 

  39. F.R. Ong, O. Bourgeois: Europhys. Lett. 79, 67003 (2007)

    Article  ADS  Google Scholar 

  40. M.B. Salamon, S.E. Inderhees, J.P. Rice, B.G. Pazol, D.M. Ginsberg, and N. Goldenfeld: Phys. Rev. B 38, 885 (1988)

    Article  ADS  Google Scholar 

  41. F. Völklein: Thin Solid Films 188, 27 (1990)

    Article  ADS  Google Scholar 

  42. L. Shi, D. Li, C. Yu, W. Jang, D. Kim, Z. Yao, P. Kim, A. Majumdar: J. Heat Transfer 125, 881 (2003)

    Article  Google Scholar 

  43. A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garnett, M. Najarian, A. Majumdar, and P.Yang: Nature 451, 163 (2008)

    Google Scholar 

  44. A.I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J.-K. Yu, W.A. Goddard III, and J.R. Heath: Nature 451, 168 (2008)

    Article  ADS  Google Scholar 

  45. D.G. Cahill, W.K. Ford, K.E. Goodson, G.D. Mahan, A. Majumdar, H.J. Maris, R. Merlin, and S.R. Phillpot: J. Appl. Phys. 93, 793 (2003)

    Article  ADS  Google Scholar 

  46. N. Mingo, L. Yang, D. Li, and A. Majumdar: Nano Lett. 3, 1713 (2003)

    Article  ADS  Google Scholar 

  47. D.G. Cahill: Rev. Sci. Instrum. 61, 802 (1990)

    Article  ADS  Google Scholar 

  48. H.S. Carslaw and J.C. Jaeger: Conduction of Heat in Solids (Clarendon Press, Oxford, 1967)

    Google Scholar 

  49. N.O. Birge and S.R. Nagel: Rev. Sci. Instrum. 58, 1464 (1987)

    Article  ADS  Google Scholar 

  50. L. Lu, W. Yi, and D.L. Zhang: Rev. Sci. Instrum. 72, 2996 (2001)

    Article  ADS  Google Scholar 

  51. A.N. Cleland, D.R. Schmidt, C.S. Yung: Phys. Rev. B 64, 172301 (2001)

    Article  ADS  Google Scholar 

  52. M.L. Roukes: Physica B 263, 1 (1999)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

I would particularly like to thank my colleagues J. Chaussy, T. Fournier, J.-L. Garden, H. Guillou, J.-S. Heron, F. Ong, J. Richard, G. Souche, and all the technical staff of Nanofab and Pôle Capteur Thermométrique et Calorimétrie.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Bourgeois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bourgeois, O. (2009). Heat Transfer in Low Temperature Micro- and Nanosystems. In: Volz, S. (eds) Thermal Nanosystems and Nanomaterials. Topics in Applied Physics, vol 118. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-04258-4_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-04258-4_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-04257-7

  • Online ISBN: 978-3-642-04258-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics