Skip to main content

Weighted Decoding ECOC for Facial Action Unit Classification

  • Chapter

Part of the book series: Studies in Computational Intelligence ((SCI,volume 245))

Abstract

There are two approaches to automating the task of facial expression recognition, the first concentrating on what meaning is conveyed by facial expression and the second on categorising deformation and motion into visual classes. The latter approach has the advantage that the interpretation of facial expression is decoupled from individual actions as in FACS (Facial Action Coding System). In this chapter, upper face action units (aus) are classified using an ensemble of MLP base classifiers with feature ranking based on PCA components. When posed as a multi-class problem using Error-Correcting-Output-Coding (ECOC), experimental results on Cohn-Kanade database demonstrate that error rates comparable to two-class problems (one-versus-rest) may be obtained. The ECOC coding and decoding strategies are discussed in detail, and a novel weighted decoding approach is shown to outperform conventional ECOC decoding. Furthermore, base classifiers are tuned using the ensemble Out-of-Bootstrap estimate, for which purpose, ECOC decoding is modified. The error rates obtained for six upper face aus around the eyes are believed to be among the best for this database.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Allwein, E.L., Schapire, R.E., Singer, Y.: Reducing multi-class to binary: a unifying approach for margin classifiers. J. Mach. Learn. Res. 1, 113–141 (2000)

    Article  MathSciNet  Google Scholar 

  2. Bartlett, M.S., Littlewort, G., Lainscsek, C., Fasel, I., Movellan, J.: Machine learning methods for fully automatic recognition of facial expressions and facial actions. In: Proc. IEEE Conf. Syst., Man and Cybernetics, The Hague, The Netherlands, pp. 592–597. IEEE Comp. Soc., Los Alamitos (2004)

    Google Scholar 

  3. Bartlett, M.S., Littlewort, G., Frank, M., Lainscsek, C., Fasel, I., Movellan, J.: Fully automatic facial action recognition in spontaneous behavior. In: Proc. 7th IEEE Conf. Automatic Face and Gesture Recogn., Southampton, UK, pp. 223–238. IEEE Comp. Soc., Los Alamitos (2006)

    Chapter  Google Scholar 

  4. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1997)

    Google Scholar 

  5. Bylander, T.: Estimating generalisation error two-class datasets using out-of-bag estimate. Mach. Learn. 48(1-3), 287–297 (2002)

    Article  MATH  Google Scholar 

  6. Cover, T.M.: Geometrical and statistical properties of systems of linear inequalities with applications in pattern recognition. IEEE Trans. Electronic Comp. 14(3), 326–334 (1965)

    Article  MATH  Google Scholar 

  7. Crammer, K., Singer, Y.: On the learnability and design of output codes for multiclass problems. Mach. Learn. 47(2-3), 201–233 (2002)

    Article  MATH  Google Scholar 

  8. Dietterich, T.G., Bakiri, G.: Error-correcting output codes: a general method for improving multiclass inductive learning programs. In: Proc. 9th Natl. Conf. Artif. Intell., Anaheim, CA, pp. 572–577. AAAI/MIT Press, Cambridge (1991)

    Google Scholar 

  9. Dietterich, T.G., Bakiri, G.: Solving multiclass learning problems via error-correcting output codes. J. Artif. Intell. Research 2, 263–286 (1995)

    MATH  Google Scholar 

  10. Dietterich, T.G.: Ensemble methods in machine learning. In: Kittler, J., Roli, F. (eds.) MCS 2000. LNCS, vol. 1857, pp. 1–15. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  11. Donato, G., Bartlett, M.S., Hager, J.C., Ekman, P., Sejnowski, T.J.: Classifying facial actions. IEEE Trans. Patt. Analysis Mach. Intell. 21(10), 974–989 (1999)

    Article  Google Scholar 

  12. Escalara, S., Tax, D.M.J., Pujol, O., Radeva, P., Duin, R.W.: Subclass problem-dependent design for error-correcting output codes. IEEE Trans. Patt. Analysis Mach. Intell. 30(8), 1041–1054 (2008)

    Article  Google Scholar 

  13. Freund, Y., Schapire, R.E.: A decision-theoretic generalisation of on-line learning and application to boosting. J. Comp. Syst. Sci. 55(1), 119–139 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1-3), 389–422 (2002)

    Article  MATH  Google Scholar 

  15. Hansen, L.K., Salamon, P.: Neural network ensembles. IEEE Trans. Patt. Analysis Mach. Intell. 12(10), 993–1001 (1990)

    Article  Google Scholar 

  16. Hastie, T., Tibshirani, R.: Classification by pairwise coupling. The Annals of Stat. 26(2), 451–471 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  17. Haykin, S.: Neural Networks: a Comprehensive Foundation. Prentice Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  18. James, G.M., Hastie, T.: The error coding method and PiCT. Computational and Graphical Stat. 7(3), 377–387 (1998)

    Article  MathSciNet  Google Scholar 

  19. Kanade, T., Cohn, J.F., Tian, Y.: Comprehensive database for facial expression analysis. In: Proc. 4th Int. Conf. Automatic Face and Gesture Recogn., Grenoble, France, pp. 46–53. IEEE Comp. Soc., Los Alamitos (2000)

    Google Scholar 

  20. Kong, E.B., Diettrich, T.G.: Error-correcting output coding corrects bias and variance. In: Prieditis, A., Russell, S.J. (eds.) Proc. 12th Int. Conf. Mach. Learn., Tahoe City, CA, pp. 313–321. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  21. Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles. Mach. Learn. 51(2), 181–207 (2003)

    Article  MATH  Google Scholar 

  22. Merz, C.J., Murphy, P.M.: UCI repository of machine learning databases (1998), http://www.ics.uci.edu/~mlearn/MLRepository.html

  23. Peterson, W.W., Weldon, J.R.: Error-Correcting Codes. MIT Press, Cambridge (1972)

    MATH  Google Scholar 

  24. Schapire, R.E.: Using output codes to boost multiclass learning problems. In: Fisher, D.H. (ed.) Proc. 14th Int. Conf. Mach. Learn., Learn., Nashville, TN, pp. 313–321. Morgan Kaufmann, San Francisco (1997)

    Google Scholar 

  25. Sejnowski, T.J., Rosenberg, C.R.: Parallel networks that learn to pronounce English text. Complex Systems 1(1), 145–168 (1987)

    MATH  Google Scholar 

  26. Silapachote, P., Karuppiah, D.R., Hanson, A.R.: Feature selection using Adaboost for face expression recognition. In: Villanueva, J.J. (ed.) Proc. 4th IASTEAD Int. Conf. Visualization, Imaging and Image Proc., Marbella, Spain, pp. 84–89. ACTA Press, Calgary (2004)

    Google Scholar 

  27. Tian, Y., Kanade, T., Cohn, J.F.: Recognising action units for facial expression analysis. IEEE Trans. Patt. Analysis Mach. Intell. 23(2), 97–115 (2001)

    Article  Google Scholar 

  28. Tian, Y., Kanade, T., Cohn, J.F.: Evaluation of Gabor-based facial action unit recognition in image sequences of increasing complexity. In: Proc. 5th Int. Conf. Automatic Face and Gesture Recogn., Washington, DC, pp. 229–234. IEEE Comp. Soc., Los Alamitos (2002)

    Google Scholar 

  29. Tou, J.T., Gonzales, R.C.: Pattern Recognition Principles. Addison-Wesley, Reading (1974)

    MATH  Google Scholar 

  30. Turk, M.A., Pentland, A.P.: Face recognition using eigenfaces. In: Proc. IEEE Int. Conf. Comp. Vision Patt. Recogn., Maui, HW, pp. 586–591. IEEE Comp. Soc., Los Alamitos (1991)

    Chapter  Google Scholar 

  31. Valentini, G., Dietterich, T.G.: Bias-variance analysis of support vector machines for the development of SVM-based ensemble methods. J. Mach. Learn. Res. 5, 725–775 (2004)

    MathSciNet  Google Scholar 

  32. Wang, W., Jones, P., Partridge, D.: Assessing the impact of input features in a feedforward neural network. Neural Computing Appl. 9(2), 101–112 (2000)

    Article  Google Scholar 

  33. Wilson, C.L., Grother, P.J., Barnes, C.S.: Binary decision clustering for neural network-based optical character recognition. Patt. Recogn. 29(3), 425–437 (1996)

    Article  Google Scholar 

  34. Windeatt, T.: Diversity measures for multiple classifier system analysis and design. Inf. Fusion 6(1), 21–36 (2004)

    Article  Google Scholar 

  35. Windeatt, T.: Spectral measure for multi-class problems. In: Roli, F., Kittler, J., Windeatt, T. (eds.) MCS 2004. LNCS, vol. 3077, pp. 184–193. Springer, Heidelberg (2004)

    Google Scholar 

  36. Windeatt, T.: Accuracy/diversity and ensemble classifier design. IEEE Trans. Neural Networks 17(5), 287–297 (2006)

    Article  Google Scholar 

  37. Windeatt, T.: Ensemble MLP classifier design. In: Jain, L.C., Sato-Ilic, M., Virvou, M., Tsihrintzis, G.A., Balas, V.E., Abeynayake, C. (eds.) Computational Intelligence Paradigms. Studies in Computational Intelligence, vol. 137, pp. 133–147. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  38. Windeatt, T., Ghaderi, R.: Multi-class learning and error-correcting code sensitivity. Electronics Letters 36(19), 1630–1632 (2000)

    Article  Google Scholar 

  39. Windeatt, T., Ghaderi, R.: Coding and decoding strategies for multiclass learning problems. Inf. Fusion 4(1), 11–21 (2003)

    Article  Google Scholar 

  40. Windeatt, T., Prior, M.: Stopping criteria for ensemble-based feature selection. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 271–281. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  41. Windeatt, T., Dias, K.: Feature-ranking ensembles for facial action unit classification. In: Prevost, L., Marinai, S., Schwenker, F. (eds.) ANNPR 2008. LNCS (LNAI), vol. 5064, pp. 267–279. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  42. Windeatt, T., Prior, M., Effron, N., Intrator, N.: Ensemble-based feature selection criteria. In: Perner, P. (ed.) Poster Proc. 5th Int. Conf. Mach. Learn. Data Mining in Patt. Recogn., Leipzig, Germany, pp. 168–182. IBaI Publishing, Leipzig (2007)

    Google Scholar 

  43. Windeatt, T., Smith, R.S., Dias, K.: Weighted decoding ECOC for facial action unit classification. In: Okun, O., Valentini, G. (eds.) Proc. 2nd Workshop Supervised and Unsupervised Ensemble Methods and Their Appl., Patras, Greece, pp. 26–30 (2007)

    Google Scholar 

  44. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy. J. Mach. Learn. Res. 5, 1205–1224 (2004)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Windeatt, T. (2009). Weighted Decoding ECOC for Facial Action Unit Classification. In: Okun, O., Valentini, G. (eds) Applications of Supervised and Unsupervised Ensemble Methods. Studies in Computational Intelligence, vol 245. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03999-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03999-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03998-0

  • Online ISBN: 978-3-642-03999-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics