Skip to main content

Laser-Tissue Interactions

  • Chapter
  • First Online:

Abstract

Understanding laser-tissue interactions and using the laser in an optimal way are the most important messages in this chapter. The wavelength-dependent penetration depth of laser light into tissue determines heat flow and the thickness of the zone of necrosis. The concept of photothermolysis, introduced by Rox Anderson, improved specificity of laser-tissue interactions. Thermal lasers are used for tissue coagulation and vaporisation. For tissue ablation, high absorption of the laser light by the tissue is necessary, as is high power density of the laser pulse (>100 kW/cm²). Keep in mind that the shorter the laser pulse or the laser irradiation on the same spot, the smaller will be the zone of necrosis. Consider possible acoustic side effects with short and ultrashort laser pulses.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Anderson RR, Parish JA. Selective photothermolysis: precise microsurgery by selective absorption of pulsed radiation. Science. 1983;220:524–7.

    Article  CAS  PubMed  Google Scholar 

  2. Anderson RR, Margolis RJ, Watanabe S, Flotte T, Hruza GJ, Dover JS. Selective photothermolysis of cutaneous pifmentation by Q-switched Nd:YAG laser pulses at 1064, 532 and 355 nm. J Invest Dermatol. 1989;93:28–32.

    Article  CAS  PubMed  Google Scholar 

  3. Boulnois JL. Photophysical processes in recent medical laser developments: a review. Lasers Med Sci. 1986;1:47–66.

    Article  Google Scholar 

  4. Cammarata F, Wautelety M. Medical lasers and laser-tissue interactions. Phys Educ. 1999;34:156–61.

    Article  Google Scholar 

  5. Gao X, Xing D. Molecular mechanisms of cell proliferation induced by low power laser irradiation. J Biomed Sci. 2009;16:4.

    Article  PubMed  Google Scholar 

  6. Hawkins-Evans D, Abrahamse H. A review of laboratory-based methods to investigate second messengers in low-level laser therapy (LLLT). Med Laser Appl. 2009;24:201–15.

    Article  Google Scholar 

  7. Henyey LG, Greenstein JL. Diffuse radiation in the galaxy. Astrophys J. 1941;93:70–83.

    Article  Google Scholar 

  8. Hibst R. Technik, Wirkungsweise und medizinische Anwendungen von Holmium- und Erbium-Lasers. In: Fortschritte der Medizin 15, Müller, Berlin eds, ecomed verlagsgesellschaft AG & Co.KG, Landsberg; 1997.

    Google Scholar 

  9. Ihler B. Laser Lithotripsie-Untersuchung der in-vitro Fragmentierung mit Mikrosekunden-Impulsen, Dissertation Universität Karlsruhe; 1992.

    Google Scholar 

  10. Jacques S. The role of tissue optics and pulse duration during high-power laser irradiation. Appl Opt. 1993;32:2447–54.

    Article  CAS  PubMed  Google Scholar 

  11. Karu TI. Low-power laser therapy. In: Vo-Dinh T, editor. Biomedical photonics handbook. London: CRC Press; 2003. p. 48–250.

    Google Scholar 

  12. Romero LF, Trelles O, Trelles MA. Real-time simulation for laser-tissue interaction model, NIC Series 2006;33:415–422.

    Google Scholar 

  13. Steiner R. Thermal and non-thermal laser-dissection. End Surg. 1994;2:214–20.

    CAS  Google Scholar 

  14. Steiner R. Interactions of laser radiation with biological tissue. In: Berlin HP, Müller GJ, editors. Applied laser medicine. Berlin: Springer; 2003. p. 101–6.

    Google Scholar 

  15. Steiner R, Melnik IS, Kienle A. Light penetration in human skin: in-vivo measurements using isotropic detectors. SPIE. 1993;1881:222–30.

    Article  Google Scholar 

  16. Thomsen S. Pathologic analysis of photothermal and photomechanical effects of laser-tissue interactions. Photochem Photobiol. 1991;53:825–35.

    CAS  PubMed  Google Scholar 

  17. Vogel A, Venugopalan V. Mechanisms of pulsed laser ablation of biological tissues. Chem Rev. 2003;103:577–644.

    Article  CAS  PubMed  Google Scholar 

  18. Wang L, Jacques SL, Zheng L. MCML – Monte Carlo modeling of light transport in multi-layered tissues. Comput Methods Programs Biomed. 1995;47:131–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Steiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Steiner, R. (2011). Laser-Tissue Interactions. In: Raulin, C., Karsai, S. (eds) Laser and IPL Technology in Dermatology and Aesthetic Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03438-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03438-1_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03437-4

  • Online ISBN: 978-3-642-03438-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics