Skip to main content

Effects of Aestivation on Skeletal Muscle Performance

  • Chapter
  • First Online:
Aestivation

Part of the book series: Progress in Molecular and Subcellular Biology ((PMSB,volume 49))

Abstract

Fitness, ecology, and behaviour of vertebrates are dependent upon locomotor performance. Locomotor performance can be constrained by underlying intrinsic skeletal muscle properties. Skeletal muscle is a highly plastic tissue undergoing phenotypic change in response to alteration in environment. Clinical and experimental models of muscle disuse cause decreases in skeletal muscle size and mechanical performance. However, in natural models of skeletal muscle disuse, both atrophy and changes in mechanical properties are more limited. Aestivation in frogs can cause decreases in muscle cross-sectional area and changes in some enzyme activities, with effects varying among muscles. However, long-term aestivation causes limited changes in muscle mechanics during simulated sprint or endurance type activities. Therefore, at least in frogs, there is maintenance of skeletal muscle performance during prolonged periods of aestivation, allowing avoidance of harsh environmental conditions without compromising the locomotor capacity to perform fitness-related activities when favourable environmental conditions return.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bennett AF, Garland T, Else P (1989) Individual correlation of morphology, muscle mechanics, and locomotion in a salamander. Am J Physiol 256:R1200–R1208

    CAS  PubMed  Google Scholar 

  • Boonyarom O, Inui K (2006) Atrophy and hypertrophy of skeletal muscles: structural and functional aspects. Acta Physiol 188:77–89

    Article  CAS  Google Scholar 

  • Buller AJ, Eccles JC, Eccles RM (1960) Interactions between motorneurones and muscles in respect of the characteristic speeds of their responses. J Physiol 150:417–439

    CAS  PubMed  Google Scholar 

  • Calsbeek R, Irschick DB (2007) The quick and the dead: locomotor performance and natural selection in island lizards. Evolution 61:2493–2503

    Article  PubMed  Google Scholar 

  • Carey HV, Andrews MT, Martin SL (2003) Mammalian hibernation: cellular and molecular responses to depressed metabolism and low temperature. Physiol Rev 83:1153–1181

    CAS  PubMed  Google Scholar 

  • Cowan KJ, Storey KB (2001) Tyrosine kinases and phosphatases in the estivating spadefoot toad. Cell Physiol Biochem 11:161–172

    Article  CAS  PubMed  Google Scholar 

  • Fitts RH, Riley DR, Widrick JJ (2000) Physiology of a microgravity environment: microgravity and skeletal muscle. J Appl Physiol 89:823–839

    CAS  PubMed  Google Scholar 

  • Flanigan J, Withers P, Storey K, Guppy M (1990) Changes in enzyme binding and activity during aestivation in the frog Neobatrachus pelobatoides. Comp Biochem Physiol B 96:67–71

    Article  CAS  PubMed  Google Scholar 

  • Goldspink G (2002) Gene expression in skeletal muscle. Biochem Soc Trans 30:285–290

    Article  CAS  PubMed  Google Scholar 

  • Grundy JE, Storey KB (1998) Antioxidant defenses and lipid peroxidation damage in estivating toads, Scaphiopus couchii. J Comp Physiol B 168:132–142

    Article  CAS  PubMed  Google Scholar 

  • Harlow HJ, Lohuis T, Beck TDI, Iaizzo PA (2001) Muscle strength in overwintering bears. Nature 409:997

    Article  CAS  PubMed  Google Scholar 

  • Hudson NJ, Franklin CE (2002a) Effect of aestivation on muscle characteristics and locomotor performance in the Green-striped burrowing frog, Cyclorana alboguttata. J Comp Physiol B 172:177–182

    Article  CAS  PubMed  Google Scholar 

  • Hudson NJ, Franklin CE (2002b) Maintaining muscle mass during extended disuse: aestivating frogs as a model species. J Exp Biol 205:2297–2303

    PubMed  Google Scholar 

  • Hudson NJ, Franklin CE (2003) Preservation of three-dimensional capillary structure in frog muscle during aestivation. J Anat 202:471–474

    Article  PubMed  Google Scholar 

  • Hudson NJ, Lavidis NA, Choy PT, Franklin CE (2005) Effect of prolonged inactivity on skeletal motor nerve terminals during aestivation in the burrowing frog, Cyclorana alboguttata. J Comp Physiol 191:373–379

    Article  Google Scholar 

  • Hudson NJ, Lehnert SA, Ingham AB, Symonds B, Franklin CE, Harper GS (2006) Lessons from an estivating frog: sparing muscle protein despite starvation and disuse. Am J Physiol 290:R836–R843

    CAS  Google Scholar 

  • Hudson NJ, Harper GS, Allingham PG, Franklin CE, Barris W, Lehnert SA (2007) Skeletal muscle extracellular matrix remodelling after aestivation in the green striped burrowing frog, Cyclorana alboguttata. Comp Biochem Physiol A 146:440–445

    Article  Google Scholar 

  • Huey R, Bennett AF, John-Alder H, Nagy KA (1984) Locomotor capacity and foraging behaviour of Kalahari lacertid lizards. Anim Behav 32:41–50

    Article  Google Scholar 

  • James RS, Navas CA (2008) Are there differences in the effects of temperature on muscle performance between toads of the same species (Bufo granulosus) living in semi arid and forest environments? Comp Biochem Physiol A 150:S72

    Google Scholar 

  • James RS, Navas CA, Herrel A (2007) How important are skeletal muscle mechanics in setting limits on jumping performance? J Exp Biol 210:923–933

    Article  PubMed  Google Scholar 

  • Jayne BC, Bennett AF (1990a) Selection of locomotor performance capacity in a natural population of garter snakes. Evolution 44:1204–1229

    Article  Google Scholar 

  • Jayne BC, Bennett AF (1990b) Scaling of speed and endurance in garter snakes: a comparison of cross-sectional and longitudinal allometries. J Zool 220:257–277

    Article  Google Scholar 

  • Johnston IA, Temple GK (2002) Thermal plasticity of skeletal muscle phenotype in ectothermic vertebrates and its significance for locomotory behaviour. J Exp Biol 205:2305–2322

    PubMed  Google Scholar 

  • Lavidis NA, Hudson NJ, Choy PT, Lehnert SA, Franklin CE (2008) Role of calcium and vesicle docking proteins in remobilising dormant neuromuscular junctions in desert frogs. J Comp Physiol A 194:27–37

    Article  CAS  Google Scholar 

  • Le Galliard JF, Clobert J, Ferrière R (2004) Physical performance and Darwinian fitness in lizards. Nature 432:502–505

    Article  PubMed  Google Scholar 

  • Lohuis TD, Harlow HJ, Beck TDI (2007) Hibernating black bears (Ursus americanus) experience skeletal muscle protein balance during winter anorexia. Comp Biochem Physiol B 147:20–28

    Article  CAS  PubMed  Google Scholar 

  • Marsh RL (1994) Jumping ability of anurans. In: Jones JH (ed) Comparative vertebrate exercise physiology. Academic, San Diego, pp 51–111

    Google Scholar 

  • Miles DB (2004) The race goes to the swift: fitness consequences of variation in sprint performance in juvenile lizards. Evol Ecol Res 6:63–75

    Google Scholar 

  • Musacchia XJ, Steffen JM, Fell RD (1988) Disuse atrophy of skeletal muscle: animal models. Exerc Sports Sci Rev 16:61–87

    Article  CAS  Google Scholar 

  • Navas CA, Antoniazzi MM, Jared C (2004) A preliminary assessment of anuran physiological and morphological adaptation to the Caatinga, a Brazilian semi-arid environment. In: Morris S, Vosloo A (eds) International congress series, vol 1275. Elsevier, Cambridge. pp. 298–305

    Google Scholar 

  • Navas CA, James RS, Wilson RS (2006) Inter-individual variation in the muscle physiology of vertebrate ectotherms: consequences for behavioural and ecological performance. In: Herrel A, Speck T, Rowe NP (eds) Ecology and biomechanics. CRC, Boca Raton, pp 231–251

    Google Scholar 

  • Navas CA, Antoniazzi MM, Carvalho JE, Suzuki H, Jared C (2007) Physiological basis for diurnal activity in despersing juvenile Bufo granulosus in the Caatinga, a Brazilian semi-arid environment. Comp Biochem Physiol A 147:647–657

    Article  Google Scholar 

  • Oki S, Desaki J, Matsuda Y, Okumura H, Shibata T (1995) Capillaries with fenestrae in the rat soleus muscle after experimental limb immobilization. J Electron Microsc 44:307–310

    CAS  Google Scholar 

  • Oki S, Itoh T, Desaki J, Matsuda Y, Okumura H, Shibata T (1998) Three dimensional structure of the vascular network in normal and immobilised muscles of the rat. Arch Phys Med Rehab 79:31–32

    Article  CAS  Google Scholar 

  • Pette D, Staron RS (2001) Transitions of muscle fiber phenotypic profiles. Histochem Cell Biol 115:359–372

    CAS  PubMed  Google Scholar 

  • Pinder AW, Storey KB, Ultsch GR (1992) Estivation and hibernation. In: Feder ME, Burggren WW (eds) Environmental physiology of the amphibians. University of Chicago Press, Chicago, pp 251–274

    Google Scholar 

  • Powers SK, Kavazis AN, McClung JM (2007) Oxidative stress and disuse muscle atrophy. J Appl Physiol 102:2389–2397

    Article  CAS  PubMed  Google Scholar 

  • Ramnanan CJ, Storey KB (2008) The regulation of thapsigargin-sensitive sarcoendoplasmic reticulum Ca2+-ATPase activity in estivation. J Comp Physiol B 178:33–45

    Article  CAS  PubMed  Google Scholar 

  • Ramnanan CJ, Storey KB (2006) Suppression of Na+/K+-ATPase activity during estivation in the land snail Otala lactea. J Exp Biol 209:677–688

    Article  CAS  PubMed  Google Scholar 

  • Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW (2004) Control of the size of human muscle mass. Annu Rev Physiol 66:799–828

    Article  CAS  PubMed  Google Scholar 

  • Rupert JL (2003) The search for genotypes that underlie human performance phenotypes. Comp Biochem Physiol A 136:191–203

    Article  Google Scholar 

  • Shavlakadze T, Grounds M (2006) Of bears, meat, mice and men: complexity of factors affecting skeletal muscle mass and fat. Bioessays 28:994–1009

    Article  CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (1990) Metabolic rate depression and biochemical adaptation in anaerobiosis, hibernation and estivation. Q Rev Biol 65:145–174

    Article  CAS  PubMed  Google Scholar 

  • Storey KB, Storey JM (2007) Tribute to P.L. Lutz: putting life on “pause” – molecular regulation of hypometabolism. J Exp Biol 210:1700–1714

    Article  CAS  PubMed  Google Scholar 

  • Symonds BL, James RS, Franklin CE (2007) Getting the jump on skeletal muscle disuse atrophy: preservation of contractile performance in aestivating Cyclorana alboguttata. J Exp Biol 210:825–835

    Article  PubMed  Google Scholar 

  • Tabary JC, Tabart C, Tardieu C, Tardieu G, Goldspink G (1972) Physiological and structural changes in the cat’s soleus muscle due to immobilization at different lengths by plaster casts. J Physiol 224:231–244

    CAS  PubMed  Google Scholar 

  • Temple GK, Johnston IA (1998) Testing hypotheses concerning the phenotypic plasticity of escape performance in fish of the family Cottidae. J Exp Biol 201:317–331

    PubMed  Google Scholar 

  • Thom JM, Thompson MW, Ruell PA, Bryant GJ, Fonda JS, Harmer AR, Janse de Jong XAK, Hunter SK (2001) Effect of 10-day cast immobilization on sarcoplasmic reticulum calcium regulation in humans. Acta Physiol Scand 172:141–147

    Article  CAS  PubMed  Google Scholar 

  • Tinker DB, Harlow HJ, Beck TDI (1998) Protein use and muscle-fibre changes in free-ranging, hibernating bears. Physiol Zool 71:414–424

    Article  CAS  PubMed  Google Scholar 

  • Trappe S, Trappe T, Gallagher P, Harber M, Alkner B, Tesch P (2004) Human muscle fibre function with 84 day bed-rest and resistance exercise. J Physiol 557(2):501–513

    Article  CAS  PubMed  Google Scholar 

  • Tsuji JS, Huey RB, Van Berkum FH, Garland T, Shaw RG (1989) Locomotor performance of hatchling fence lizards (Sceloporus occidentalis): quantitative genetics and morphometric correlates. Evol Ecol 3:240–252

    Article  Google Scholar 

  • Vyskočil F, Gutmann E (1977) Contractile and histochemical properties of skeletal muscle in hibernating and awake golden hamsters. J Comp Physiol 122:385–390

    Google Scholar 

  • West TG, Donohoe PH, Staples JF, Askew GN (2006) The role for skeletal muscle in the hypoxia-induced hypometabolic responses of submerged frogs. J Exp Biol 209:1159–1168

    Article  CAS  PubMed  Google Scholar 

  • Williams PE, Goldspink G (1973) The effect of immobilization on the longitudinal growth of striated muscle fibres. J Anat 116:45–55

    CAS  PubMed  Google Scholar 

  • Wilson RS, James RS, Johnston IA (2000) Thermal acclimation of locomotor performance in tadpoles and adults of the aquatic frog, Xenopus laevis. J Comp Physiol B 170:117–124

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rob S. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

James, R.S. (2010). Effects of Aestivation on Skeletal Muscle Performance. In: Arturo Navas, C., Carvalho, J. (eds) Aestivation. Progress in Molecular and Subcellular Biology, vol 49. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02421-4_8

Download citation

Publish with us

Policies and ethics