Skip to main content

Aging: Evolutionary Theory Meets Genomic Approaches

  • Chapter
  • First Online:
Evolutionary Biology

Abstract

Modern evolutionary theory describes aging as the result of an accumulation of late-acting, deleterious genes caused by reduced force of natural selection late in life, combined with selection for genes that are beneficial early in life but damaging late in life. Theories based on this logic predict that organisms will be optimized for overall fitness as opposed to maximum longevity. Recent advances in genomics combined with large-scale methods for single gene knockout in several common aging models have allowed the first genome-wide studies of life span. These studies provide insight into several aspects of the biology of aging that relate to evolution, including the scope of cellular processes that influence longevity and the conservation of longevity determinants between organisms. Here we review the evolution of the aging field over the past several years and the implications of the move toward genomics. We also highlight key results and discuss their importance and relation to evolutionary theories of aging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Aparicio OM, Billington BL, Gottschling DEe (1991) Modifiers of position effect are shared between telomeric and silent mating-type loci in Saccharomyces cerevisiae. Cell 66:1279–1287

    Article  CAS  PubMed  Google Scholar 

  • Apfeld J, Kenyon C (1999) Regulation of lifespan by sensory perception in Caenorhabditis elegans. Nature 402:804–809

    Article  CAS  PubMed  Google Scholar 

  • Banks AS, Kon N, Knight C, Matsumoto M, Gutierrez-Juarez R, Rossetti L, Gu W, Accili D (2008) SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab 8:333–341

    Article  CAS  PubMed  Google Scholar 

  • Bartke A (2008) Impact of reduced insulin-like growth factor-1/insulin signaling on aging in mammals: novel findings. Aging Cell 7:285–290

    Article  CAS  PubMed  Google Scholar 

  • Bartke A, Wright JC, Mattison JA, Ingram DK, Miller RA, Roth GS (2001) Extending the lifespan of long-lived mice. Nature 414:412

    Article  CAS  PubMed  Google Scholar 

  • Becker KG (2002) Deciphering the gene expression profile of long-lived snell mice. Sci Aging Knowledge Environ 2002:pe4

    Google Scholar 

  • Berdichevsky A, Viswanathan M, Horvitz HR, Guarente L (2006) C. elegans SIR-2.1 interacts with 14-3-3 proteins to activate DAF-16 and extend life span. Cell 125:1165–1177

    Article  CAS  PubMed  Google Scholar 

  • Bluher M, Kahn BB, Kahn RC (2003) Extended longevity in mice lacking the insulin receptor in adipose tissue. Science 299:572–574

    Article  PubMed  CAS  Google Scholar 

  • Bordone L, Cohen D, Robinson A, Motta MC, van Veen E, Czopik A, Steele AD, Crowe H, Marmor S, Luo J, Gu W, Guarente L (2007) SIRT1 transgenic mice show phenotypes resembling calorie restriction. Aging Cell 6:759–767

    Article  CAS  PubMed  Google Scholar 

  • Brown-Borg HM, Borg KE, Meliska CJ, Bartke A (1996) Dwarf mice and the ageing process. Nature 384:33

    Article  CAS  PubMed  Google Scholar 

  • Brunet A, Sweeney LB, Sturgill JF, Chua KF, Greer PL, Lin Y, Tran H, Ross SE, Mostoslavsky R, Cohen HY, Hu LS, Cheng HL, Jedrychowski MP, Gygi SP, Sinclair DA, Alt FW, Greenberg ME (2004) Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 303:2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Bryk M, Banerjee M, Murphy M, Knudsen KE, Garfinkel DJ, Curcio MJ (1997) Transcriptional silencing of Ty1 elements in the RDN1 locus of yeast. Genes Dev. 11:255–269

    Article  CAS  PubMed  Google Scholar 

  • Buck S, Vettraino J, Force AG, Arking R (2000) Extended longevity in Drosophila is consistently associated with a decrease in developmental viability. J Gerontol A Biol Sci Med Sci 55:B292–301

    CAS  PubMed  Google Scholar 

  • Burger JM, Hwangbo DS, Corby-Harris V, Promislow DE (2007) The functional costs and benefits of dietary restriction in Drosophila. Aging Cell 6:63–71

    Article  CAS  PubMed  Google Scholar 

  • Chapman T, Partridge L (1996) Female fitness in Drosophila melanogaster: an interaction between the effect of nutrition and of encounter rate with males. Proc Biol Sci 263:755–759

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Pan KZ, Palter JE, Kapahi P (2007a) Longevity determined by developmental arrest genes in Caenorhabditis elegans. Aging Cell 6:525–533

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Senturk D, Wang JL, Muller HG, Carey JR, Caswell H, Caswell-Chen EP (2007b) A demographic analysis of the fitness cost of extended longevity in Caenorhabditis elegans. J Gerontol A Biol Sci Med Sci 62:126–135

    PubMed  Google Scholar 

  • Chua KF, Mostoslavsky R, Lombard DB, Pang WW, Saito S, Franco S, Kaushal D, Cheng HL, Fischer MR, Stokes N, Murphy MM, Appella E, Alt FW (2005) Mammalian SIRT1 limits replicative life span in response to chronic genotoxic stress. Cell Metab 2:67–76

    Article  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Harshman LG, Oldham S, Stocker H, Hafen E, Leevers SJ, Partridge L (2001) Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science 292:104–106

    Article  CAS  PubMed  Google Scholar 

  • Clancy DJ, Gems D, Hafen E, Leevers SJ, Partridge L (2002) Dietary restriction in long-lived dwarf flies. Science 296:319

    Article  CAS  PubMed  Google Scholar 

  • Coschigano KT, Holland AN, Riders ME, List EO, Flyvbjerg A, Kopchick JJ (2003) Deletion, but not antagonism, of the mouse growth hormone receptor results in severely decreased body weights, insulin, and insulin-like growth factor I levels and increased life span. Endocrinology 144:3799–3810

    Article  CAS  PubMed  Google Scholar 

  • Curran SP, Ruvkun G (2007) Lifespan regulation by evolutionarily conserved genes essential for viability. PLoS Genet 3:e56

    Article  PubMed  CAS  Google Scholar 

  • De Virgilio C, Loewith R (2006) The TOR signalling network from yeast to man. Int J Biochem Cell Biol 38:1476–1481

    Article  CAS  PubMed  Google Scholar 

  • Dhahbi JM, Kim HJ, Mote PL, Beaver RJ, Spindler SR (2004) Temporal linkage between the phenotypic and genomic responses to caloric restriction. Proc Natl Acad Sci USA 101:5524–5529

    Article  CAS  PubMed  Google Scholar 

  • Dillin A, Hsu AL, Arantes-Oliveira N, Lehrer-Graiwer J, Hsin H, Fraser AG, Kamath RS, Ahringer J, Kenyon C (2002) Rates of behavior and aging specified by mitochondrial function during development. Science 298:2398–2401

    Article  CAS  PubMed  Google Scholar 

  • Dorman JB, Albinder B, Shroyer T, Kenyon C (1995) The age-1 and daf-2 genes function in a common pathway to control the lifespan of Caenorhabditis elegans. Genetics 141:1399–1406

    CAS  PubMed  Google Scholar 

  • Fabrizio P, Longo VD (2003) The chronological life span of Saccharomyces cerevisiae. Aging Cell 2:73–81

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P, Battistella L, Vardavas R, Gattazzo C, Liou LL, Diaspro A, Dossen JW, Gralla EB, Longo VD (2004) Superoxide is a mediator of an altruistic aging program in Saccharomyces cerevisiae. J. Cell Biol 166:1055–1067

    Article  CAS  PubMed  Google Scholar 

  • Fabrizio P, Gattazzo C, Battistella L, Wei M, Cheng C, McGrew K, Longo VD (2005) Sir2 blocks extreme life-span extension. Cell 123:655–667

    Article  CAS  PubMed  Google Scholar 

  • Firestein R, Blander G, Michan S, Oberdoerffer P, Ogino S, Campbell J, Bhimavarapu A, Luikenhuis S, de Cabo R, Fuchs C, Hahn WC, Guarente LP, Sinclair DA (2008) The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth. PLoS ONE 3:e2020

    Article  PubMed  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Oxford Press, Oxford

    Google Scholar 

  • Flurkey K, Papaconstantinou J,Harrison DE (2002) The Snell dwarf mutation Pit1(dw) can increase life span in mice. Mech Ageing Dev 123:121–130

    Article  CAS  PubMed  Google Scholar 

  • Gerhart-Hines Z, Rodgers JT, Bare O, Lerin C, Kim SH, Mostoslavsky R, Alt FW, Wu Z, Puigserver P (2007) Metabolic control of muscle mitochondrial function and fatty acid oxidation through SIRT1/PGC-1alpha. Embo J 26:1913–1923

    Article  CAS  PubMed  Google Scholar 

  • Gershman B, Puig O, Hang L, Peitzsch RM, Tatar M, Garofalo RS (2007) High-resolution dynamics of the transcriptional response to nutrition in Drosophila: a key role for dFOXO. Physiol Genomics 29:24–34

    CAS  PubMed  Google Scholar 

  • Giannakou ME, Goss M, Partridge L (2008) Role of dFOXO in lifespan extension by dietary restriction in Drosophila melanogaster: not required, but its activity modulates the response. Aging Cell 7:187–198

    Article  CAS  PubMed  Google Scholar 

  • Golden TR, Hubbard A, Melov S (2006) Microarray analysis of variation in individual aging C. elegans: approaches and challenges. Exp Gerontol 41:1040–1045

    Article  CAS  PubMed  Google Scholar 

  • Good TP, Tatar M (2001) Age-specific mortality and reproduction respond to adult dietary restriction in Drosophila melanogaster. J Insect Physiol 47:1467–1473

    Article  CAS  PubMed  Google Scholar 

  • Gottschling DE, Aparicio OM, Billington BL, Zakian VA (1990) Position effect at Saccharomyces cerevisiae telomeres: reversible repression of Pol II transcription. Cell 63:751–762

    Article  CAS  PubMed  Google Scholar 

  • Greer EL, Dowlatshahi D, Banko MR, Villen J, Hoang K, Blanchard D, Gygi SP, Brunet A (2007) An AMPK-FOXO pathway mediates longevity induced by a novel method of dietary restriction in C. elegans. Curr Biol 17:1646–56

    Article  CAS  PubMed  Google Scholar 

  • Guarente L, Picard F (2005) Calorie restriction—the SIR2 connection. Cell 120:473–482

    Article  CAS  PubMed  Google Scholar 

  • Guertin DA, Guntur KV, Bell GW, Thoreen CC, Sabatini DM (2006) Functional genomics identifies TOR-regulated genes that control growth and division. Curr Biol 16:958–970

    Article  CAS  PubMed  Google Scholar 

  • Haldane JBS (1941) New paths in genetics. Allen & Unwin, London

    Google Scholar 

  • Hamilton B, Dong Y, Shindo M, Liu W, Odell I, Ruvkun G, Lee SS (2005) A systematic RNAi screen for longevity genes in C. elegans. Genes Dev 19:1544–1555

    Article  CAS  PubMed  Google Scholar 

  • Han ES, Wu Y, McCarter R, Nelson JF, Richardson A, Hilsenbeck SG (2004) Reproducibility, sources of variability, pooling, and sample size: important considerations for the design of high-density oligonucleotide array experiments. J Gerontol A Biol Sci Med Sci 59:306–315

    PubMed  Google Scholar 

  • Hansen M, Hsu AL, Dillin A, Kenyon C (2005) New genes tied to endocrine, metabolic, and dietary regulation of lifespan from a Caenorhabditis elegans genomic RNAi screen. PLoS Genet 1:119–128

    Article  CAS  PubMed  Google Scholar 

  • Hansen M, Taubert S, Crawford D, Libina N, Lee SJ, Kenyon C (2007) Lifespan extension by conditions that inhibit translation in Caenorhabditis elegans. Aging Cell 6:95–110

    Article  CAS  PubMed  Google Scholar 

  • Helliwell SB, Howald I, Barbet N, Hall MN (1998) TOR2 is part of two related signaling pathways coordinating cell growth in Saccharomyces cerevisiae. Genetics 148:99–112

    CAS  PubMed  Google Scholar 

  • Hercus MJ, Loeschcke V, Rattan SI (2003) Lifespan extension of Drosophila melanogaster through hormesis by repeated mild heat stress. Biogerontology 4:149–156

    Article  CAS  PubMed  Google Scholar 

  • Holzenberger M, Dupont J, Ducos B, Leneuve P, Geloen A, Even PC, Cervera P, Le Bouc Y (2003) IGF-1 receptor regulates lifespan and resistance to oxidative stress in mice. Nature 421:182–187

    Article  CAS  PubMed  Google Scholar 

  • Houthoofd K, Braeckman BP, Johnson TE, Vanfleteren JR (2003) Life extension via dietary restriction is independent of the Ins/IGF-1 signalling pathway in Caenorhabditis elegans. Exp Gerontol 38:947–954

    Article  CAS  PubMed  Google Scholar 

  • Imai S, Armstrong CM, Kaeberlein M, Guarente L (2000) Transcriptional silencing and longevity protein Sir2 is an NAD- dependent histone deacetylase. Nature 403:795–800

    Article  CAS  PubMed  Google Scholar 

  • Iser WB, Wolkow CA (2007) DAF-2/insulin-like signaling in C. elegans modifies effects of dietary restriction and nutrient stress on aging, stress and growth. PLoS ONE 2:e1240

    Article  PubMed  CAS  Google Scholar 

  • Ivy JM, Klar AJ, Hicks JB (1986) Cloning and characterization of four SIR genes of Saccharomyces cerevisiae. Mol Cell Biol 6:688–702

    CAS  PubMed  Google Scholar 

  • Jenkins NL, McColl G, Lithgow GJ (2004) Fitness cost of extended lifespan in Caenorhabditis elegans. Proc Biol Sci 271:2523–2526

    Article  PubMed  Google Scholar 

  • Jia K, Chen D, Riddle DL (2004) The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 131:3897–3906

    Article  CAS  PubMed  Google Scholar 

  • Jiang JC, Jaruga E, Repnevskaya MV, Jazwinski SM (2000) An intervention resembling caloric restriction prolongs life span and retards aging in yeast. FASEB J 14:2135–2137

    CAS  PubMed  Google Scholar 

  • Juhasz G, Erdi B, Sass M, Neufeld TP (2007) Atg7-dependent autophagy promotes neuronal health, stress tolerance, and longevity but is dispensable for metamorphosis in Drosophila. Genes Dev 21:3061–3066

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M (2004) Aging-related research in the “-omics” age. Sci Aging Knowledge Environ pe39

    Google Scholar 

  • Kaeberlein M (2006) Longevity and aging in the budding yeast. In: Conn PM (ed) Handbook of models for human aging. Elsevier, Boston, MA

    Google Scholar 

  • Kaeberlein M, Kennedy BK (2008) Protein translation, 2008. Aging Cell 7:777–782

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Powers RW, 3rd (2007) Sir2 and calorie restriction in yeast: a skeptical perspective. Ageing Res Rev 6:128–140

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, McVey M, Guarente L (1999) The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Andalis AA, Fink GR, Guarente L (2002) High osmolarity extends life span in Saccharomyces cerevisiae by a mechanism related to calorie restriction. Mol Cell Biol 22:8056–8066

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Kirkland KT, Fields S, Kennedy BK (2004) Sir2-independent life span extension by calorie restriction in yeast. PLOS Biol 2:1381–1387

    Article  CAS  Google Scholar 

  • Kaeberlein M, Powers III RW, Steffen KK, Westman EA, Hu D, Dang N, Kerr EO, Kirkland KT, Fields S, Kennedy BK (2005) Regulation of yeast replicative life-span by TOR and Sch9 in response to nutrients. Science 310:1193–1196

    Article  CAS  PubMed  Google Scholar 

  • Kaeberlein M, Burtner CR, Kennedy BK (2007) Recent developments in yeast aging. PLoS Genet. 3:655–660

    Article  CAS  Google Scholar 

  • Kaeberlein TL, Smith ED, Tsuchiya M, Welton KL, Thomas JH, Fields S, Kennedy BK, Kaeberlein M (2006) Lifespan extension in Caenorhabditis elegans by complete removal of food. Aging Cell 5:487–494

    Article  CAS  PubMed  Google Scholar 

  • Kamath RS, Fraser AG, Dong Y, Poulin G, Durbin R, Gotta M, Kanapin A, Le Bot N, Moreno S, Sohrmann M, Welchman DP, Zipperlen P, Ahringer J (2003) Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 421:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S (2004) Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 14:885–890

    Article  CAS  PubMed  Google Scholar 

  • Kayo T, Allison DB, Weindruch R, Prolla TA (2001) Influences of aging and caloric restriction on the transcriptional profile of skeletal muscle from rhesus monkeys. Proc Natl Acad Sci USA 98:5093–5098

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK (2008) The genetics of ageing: insight from genome-wide approaches in invertebrate model organisms. J Intern Med 263:142–152

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK, Smith ED, Kaeberlein M (2005) The enigmatic role of Sir2 in aging. Cell 123:548–550

    Article  CAS  PubMed  Google Scholar 

  • Kennedy BK, Steffen KK, Kaeberlein M (2007) Ruminations on dietary restriction and aging. Cell Mol Life Sci 64:1323–1328

    Article  CAS  PubMed  Google Scholar 

  • Kenyon C, Chang J, Gensch E, Rudner A, Tabtiang R (1993) A C. elegans mutant that lives twice as long as wild type. Nature 366:461–464

    Article  CAS  PubMed  Google Scholar 

  • Kim D, Nguyen MD, Dobbin MM, Fischer A, Sananbenesi F, Rodgers JT, Delalle I, Baur JA, Sui G, Armour SM, Puigserver P, Sinclair DA, Tsai LH (2007) SIRT1 deacetylase protects against neurodegeneration in models for Alzheimer's disease and amyotrophic lateral sclerosis. Embo J 26:3169–3179

    Article  CAS  PubMed  Google Scholar 

  • Kim Y, Sun H (2007) Functional genomic approach to identify novel genes involved in the regulation of oxidative stress resistance and animal lifespan. Aging Cell 6:489–503

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (1977) Evolution of ageing. Nature 270:301–304

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437–447

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TB, Holliday R (1979) The evolution of ageing and longevity. Proc R Soc Lond B Biol Sci 205:531–546

    Article  CAS  PubMed  Google Scholar 

  • Lakowski B, Hekimi S (1998) The genetics of caloric restriction in Caenorhabditis elegans. Proc Natl Acad Sci USA 95:13091–13096

    Article  CAS  PubMed  Google Scholar 

  • Lamming DW, Latorre-Esteves M, Medvedik O, Wong SN, Tsang FA, Wang C, Lin SJ, Sinclair DA (2005) HST2 mediates SIR2-independent life-span extension by calorie restriction. Science 309:1861–1864

    Article  CAS  PubMed  Google Scholar 

  • Landis GN, Abdueva D, Skvortsov D, Yang J, Rabin BE, Carrick J, Tavare S, Tower J (2004) Similar gene expression patterns characterize aging and oxidative stress in Drosophila melanogaster. Proc Natl Acad Sci USA 101:7663–7668

    Article  CAS  PubMed  Google Scholar 

  • Landry J, Sutton A, Tafrov ST, Heller RC, Stebbins J, Pillus L, Sternglanz R (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97:5807–5811

    Article  CAS  PubMed  Google Scholar 

  • Lee GD, Wilson MA, Zhu M, Wolkow CA, de Cabo R, Ingram DK, Zou S (2006) Dietary deprivation extends lifespan in Caenorhabditis elegans. Aging Cell 5:515–524

    Article  CAS  PubMed  Google Scholar 

  • Lee SS, Lee RY, Fraser AG, Kamath RS, Ahringer J, Ruvkun G (2003) A systematic RNAi screen identifies a critical role for mitochondria in C. elegans longevity. Nat Genet 33:40–48

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Xu W, McBurney MW, Longo VD (2008) SirT1 inhibition reduces IGF-I/IRS-2/Ras/ERK1/2 signaling and protects neurons. Cell Metab 8:38–48

    Article  PubMed  CAS  Google Scholar 

  • Libert S, Zwiener J, Chu X, Van Voorhies W, Roman G, Pletcher SD (2007) Regulation of Drosophila life span by olfaction and food-derived odors. Science 315:1133–1137

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Defossez PA, Guarente L (2000) Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae. Science 289:2126–2128

    Article  CAS  PubMed  Google Scholar 

  • Lin SJ, Kaeberlein M, Andalis AA, Sturtz LA, Defossez PA, Culotta VC, Fink GR, Guarente L (2002) Calorie restriction extends Saccharomyces cerevisiae lifespan by increasing respiration. Nature 418:344–348

    Article  CAS  PubMed  Google Scholar 

  • Lithgow GJ, White TM, Melov S, Johnson TE (1995) Thermotolerance and extended life-span conferred by single-gene mutations and induced by thermal stress. Proc Natl Acad Sci USA 92:7540–7544

    Article  CAS  PubMed  Google Scholar 

  • Luo J, Nikolaev AY, Imai S, Chen D, Su F, Shiloh A, Guarente L, Gu W (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107:137–148

    Article  CAS  PubMed  Google Scholar 

  • Mair W, Goymer P, Pletcher SD, Partridge L (2003) Demography of dietary restriction and death in Drosophila. Science 301:1731–1733

    Article  CAS  PubMed  Google Scholar 

  • Marden JH, Rogina B, Montooth KL, Helfand SL (2003) Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 100:3369–3373

    Article  CAS  PubMed  Google Scholar 

  • Martin DE, Hall MN (2005) The expanding TOR signaling network. Curr Opin Cell Biol 17:158–166

    Article  CAS  PubMed  Google Scholar 

  • Martin GM, Austad SN, Johnson TE (1996) Genetic analysis of ageing: role of oxidative damage and environmental stresses. Nat Genet 13:25–34

    Article  CAS  PubMed  Google Scholar 

  • Masoro EJ (2005) Overview of caloric restriction and ageing. Mech Ageing Dev 126:913–922

    Article  CAS  PubMed  Google Scholar 

  • Masternak MM, Al-Regaiey K, Bonkowski MS, Panici J, Sun L, Wang J, Przybylski GK, Bartke A (2004) Divergent effects of caloric restriction on gene expression in normal and long-lived mice. J Gerontol A Biol Sci Med Sci 59:784–788

    PubMed  Google Scholar 

  • McCarroll SA, Murphy CT, Zou S, Pletcher SD, Chin CS, Jan YN, Kenyon C, Bargmann CI, Li H (2004) Comparing genomic expression patterns across species identifies shared transcriptional profile in aging. Nat Genet 36:197–204

    Article  CAS  PubMed  Google Scholar 

  • McCay CM, Crowell MF, Maynard LA (1935) The effect of retarded growth upon the length of life and upon ultimate size. J Nutr 10:63–79

    CAS  Google Scholar 

  • McElwee J, Bubb K, Thomas JH (2003) Transcriptional outputs of the Caenorhabditis elegans forkhead protein DAF-16. Aging Cell 2:111–121

    Article  CAS  PubMed  Google Scholar 

  • Medawar P (1952) An unsolved problem in biology. H.K. Lewis, London

    Google Scholar 

  • Medawar PB (1946) Old age and natural death. Mod 1:30–56

    Google Scholar 

  • Melov S, Hubbard A (2004) Microarrays as a tool to investigate the biology of aging: a retrospective and a look to the future. Sci Aging Knowledge Environ re7

    Google Scholar 

  • Miller RA, Chang Y, Galecki AT, Al-Regaiey K, Kopchick JJ, Bartke A (2002) Gene expression patterns in calorically restricted mice: partial overlap with long-lived mutant mice. Mol Endocrinol 16:2657–2666

    Article  CAS  PubMed  Google Scholar 

  • Miller RA, Harrison DE, Astle CM, Floyd RA, Flurkey K, Hensley KL, Javors MA, Leeuwenburgh C, Nelson JF, Ongini E, Nadon NL, Warner HR, Strong R (2007) An aging interventions testing program: study design and interim report. Aging Cell 6:565–575

    Article  CAS  PubMed  Google Scholar 

  • Mockett RJ, Sohal RS (2006) Temperature-dependent trade-offs between longevity and fertility in the Drosophila mutant, methuselah. Exp Gerontol 41:566–573

    Article  PubMed  Google Scholar 

  • Mortimer RK, Johnston JR (1959) Life span of individual yeast cells. Nature 183:1751–1752

    Article  CAS  PubMed  Google Scholar 

  • Motta MC, Divecha N, Lemieux M, Kamel C, Chen D, Gu W, Bultsma Y, McBurney M, Guarente L (2004) Mammalian SIRT1 represses forkhead transcription factors. Cell 116:551–563

    Article  CAS  PubMed  Google Scholar 

  • Murakami S, Johnson TE (1996) A genetic pathway conferring life extension and resistance to UV stress in Caenorhabditis elegans. Genetics 143:1207–1218

    CAS  PubMed  Google Scholar 

  • Murphy CT, McCarroll SA, Bargmann CI, Fraser A, Kamath RS, Ahringer J, Li H, Kenyon C (2003) Genes that act downstream of DAF-16 to influence the lifespan of Caenorhabditis elegans. Nature 424:277–283

    Article  CAS  PubMed  Google Scholar 

  • Nair PN, Golden T, Melov S (2003) Microarray workshop on aging. Mech Ageing Dev 124:133–138

    Article  PubMed  Google Scholar 

  • Oberdoerffer P, Michan S, McVay M, Mostoslavsky R, Vann J, Park SK, Hartlerode A, Stegmuller J, Hafner A, Loerch P, Wright SM, Mills KD, Bonni A, Yankner BA, Scully R, Prolla TA, Alt FW, Sinclair DA (2008) SIRT1 redistribution on chromatin promotes genomic stability but alters gene expression during aging. Cell 135:907–918

    Article  CAS  PubMed  Google Scholar 

  • Pletcher SD, Macdonald SJ, Marguerie R, Certa U, Stearns SC, Goldstein DB, Partridge L (2002) Genome-wide transcript profiles in aging and calorically restricted Drosophila melanogaster. Curr Biol 12:712–723

    Article  CAS  PubMed  Google Scholar 

  • Powers RW, 3rd, Kaeberlein M, Caldwell SD, Kennedy BK, Fields S (2006) Extension of chronological life span in yeast by decreased TOR pathway signaling. Genes Dev 20:174–184

    Article  CAS  PubMed  Google Scholar 

  • Reznick DN, Bryant MJ, Roff D, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431:1095–1099

    Article  CAS  PubMed  Google Scholar 

  • Rine J, Herskowitz I (1987) Four genes responsible for a position effect on expression from HML and HMR in Saccharomyces cerevisiae. Genetics 116:9–22

    CAS  PubMed  Google Scholar 

  • Rodgers JT, Lerin C, Gerhart-Hines Z, Puigserver P (2008) Metabolic adaptations through the PGC-1 alpha and SIRT1 pathways. FEBS Lett 582:46–53

    Article  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL (2004) Sir2 mediates longevity in the fly through a pathway related to calorie restriction. Proc Natl Acad Sci USA 101:15998–16003

    Article  CAS  PubMed  Google Scholar 

  • Rogina B, Reenan RA, Nilsen SP, Helfand SL (2000) Extended life-span conferred by cotransporter gene mutations in Drosophila. Science 290:2137–2140

    Article  CAS  PubMed  Google Scholar 

  • Rogina B, Helfand SL, Frankel S (2002) Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298:1745

    Article  CAS  PubMed  Google Scholar 

  • Rual JF, Ceron J, Koreth J, Hao T, Nicot AS, Hirozane-Kishikawa T, Vandenhaute J, Orkin SH, Hill DE, van den Heuvel S, Vidal M (2004) Toward improving Caenorhabditis elegans phenome mapping with an ORFeome-based RNAi library. Genome Res 14:2162–2168

    Article  CAS  PubMed  Google Scholar 

  • Sinclair DA, Guarente L (1997) Extrachromosomal rDNA circles-a cause of aging in yeast. Cell 91:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Smith ED, Tsuchiya M, Fox LA, Dang N, Hu D, Kerr EO, Johnston ED, Tchao BN, Pak DN, Welton KL, Promislow DEL, Thomas JH, Kaeberlein M, Kennedy BK (2008) Quantitative evidence for conserved longevity pathways between divergent eukaryotic species. Genome Res 18:564–570

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Boeke JD (1997) An unusual form of transcriptional silencing in yeast ribosomal DNA. Genes Dev 11:241–254

    Article  CAS  PubMed  Google Scholar 

  • Smith JS, Brachmann CB, Celic I, Kenna MA, Muhammad S, Starai VJ, Avalos JL, Escalante-Semerena JC, Grubmeyer C, Wolberger C, Boeke JD (2000) A phylogenetically conserved NAD+-dependent protein deacetylase activity in the Sir2 protein family. Proc Natl Acad Sci USA 97:6658–6663

    Article  CAS  PubMed  Google Scholar 

  • Steffen KK, MacKay VL, Kerr EO, Tsuchiya M, Hu D, Fox LA, Dang N, Johnston ED, Oakes JA, Tchao BN, Pak DN, Fields S, Kennedy BK, Kaeberlein M (2008) Yeast lifespan extension by depletion of 60S ribosomal subunits is mediated by Gcn4. Cell 133:292–302

    Article  CAS  PubMed  Google Scholar 

  • Steinkraus KA, Kaeberlein M, Kennedy BK (2008) Replicative aging in yeast: the means to the end. Annu Rev Cell Dev Biol 24:29–54

    Article  CAS  PubMed  Google Scholar 

  • Taguchi A, White MF (2008) Insulin-like signaling, nutrient homeostasis, and life span. Annu Rev Physiol 70:191–212

    Article  CAS  PubMed  Google Scholar 

  • Tanner KG, Landry J, Sternglanz R, Denu JM (2000) Silent information regulator 2 family of NAD-dependent histone/protein deacetylases generates a unique product, 1-O-acetyl-ADP-ribose. Proc Natl Acad Sci USA 97:14178–14182

    Article  CAS  PubMed  Google Scholar 

  • Tatar M, Kopelman A, Epstein D, Tu MP, Yin CM, Garofalo RS (2001) A mutant Drosophila insulin receptor homolog that extends life-span and impairs neuroendocrine function. Science 292:107–110

    Article  CAS  PubMed  Google Scholar 

  • Timmons L, Fire A (1998) Specific interference by ingested dsRNA. Nature 395:854

    Article  CAS  PubMed  Google Scholar 

  • Tissenbaum HA, Guarente L (2001) Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature 410:227–230

    Article  CAS  PubMed  Google Scholar 

  • Toivonen JM, Partridge L (2008) Endocrine regulation of ageing and reproduction in Drosophila. Mol Cell Endocrinol

    Google Scholar 

  • Tsuchiya M, Dang N, Kerr EO, Hu D, Steffen KK, Oakes JA, Kennedy BK, Kaeberlein M (2006) Sirtuin-independent effects of nicotinamide on lifespan extension from calorie restriction in yeast. Aging Cell 5:505–514

    Article  CAS  PubMed  Google Scholar 

  • Tu MP, Epstein D, Tatar M (2002) The demography of slow aging in male and female Drosophila mutant for the insulin-receptor substrate homologue chico. Aging Cell 1:75–80

    Article  CAS  PubMed  Google Scholar 

  • Valenzuela L, Aranda C, Gonzalez A (2001) TOR modulates GCN4-dependent expression of genes turned on by nitrogen limitation. J Bacteriol 183:2331–2334

    Article  CAS  PubMed  Google Scholar 

  • van der Horst A, Tertoolen LG, de Vries-Smits LM, Frye RA, Medema RH, Burgering BM (2004) FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 279:28873–28879

    Article  CAS  PubMed  Google Scholar 

  • Van Voorhies WA, Ward S (1999) Genetic and environmental conditions that increase longevity in Caenorhabditis elegans decrease metabolic rate. Proc Natl Acad Sci USA 96:11399–11403

    Article  CAS  PubMed  Google Scholar 

  • Vaziri H, Dessain SK, Eaton EN, Imai SI, Frye RA, Pandita TK, Guarente L, Weinberg RA (2001) hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase. Cell 107:149–159

    Article  CAS  PubMed  Google Scholar 

  • Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Muller F (2003) Genetics: influence of TOR kinase on lifespan in C. elegans. Nature 426:620

    Article  CAS  PubMed  Google Scholar 

  • Viswanathan M, Kim SK, Berdichevsky A, Guarente L (2005) A role for SIR-2.1 regulation of ER stress response genes in determining C. elegans life span. Dev Cell 9:605–615

    Article  CAS  PubMed  Google Scholar 

  • Walker DW, McColl G, Jenkins NL, Harris J, Lithgow GJ (2000) Evolution of lifespan in C. elegans. Nature 405:296–297

    Article  CAS  PubMed  Google Scholar 

  • Wallace AR (1889) The action of natural selection in producing old age, decay and death [a note by Wallace written “some time between 1865 and 1870”]. In: Weismann A (ed) Essays on hereditary and kindred biological problems. Clarendon, Oxford

    Google Scholar 

  • Wang DY, Kumar S, Hedges SB (1999) Divergence time estimates for the early history of animal phyla and the origin of plants, animals and fungi. Proc Biol Sci 266:163–171

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Wook Oh S, Deplancke B, Luo J, Walhout AJM, Tissenbaum HA (2006) C. elegans 14-3-3 proteins regulate life span and interact with SIR-2.1 and DAF-16/FOXO. Mech Ageing Dev 127:741–747

    Article  CAS  PubMed  Google Scholar 

  • Weindruch R, Walford RL (1988) The retardation of aging and disease by dietary restriction. Charles C. Thomas, Springfield, IL

    Google Scholar 

  • Weindruch R, Kayo T, Lee CK, Prolla TA (2001) Microarray profiling of gene expression in aging and its alteration by caloric restriction in mice. J Nutr 131:918S–923S

    CAS  PubMed  Google Scholar 

  • Weismann A (1889) Essays upon hereditary and kindred biological problems. Clarendon, Oxford

    Google Scholar 

  • Werner T (2007) Regulatory networks: linking microarray data to systems biology. Mech Ageing Dev 128:168–172

    Article  CAS  PubMed  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Winzeler EA, Shoemaker DD, Astromoff A, Liang H, Anderson K, Andre B, Bangham R, Benito R, Boeke JD, Bussey H, Chu M, Connelly C, Davis K, Dietrich F, Dow SW, El Bakkoury M, Foury F, Friend SH, Gentalen E, Giaever G, Hegemann JH, Jones T, Laub M, Liao H, Liebundguth N, Lockhart DJ, Lucau-Danila A, Lussier M, M'Rabet N, Menard P, Mittmann M, Pai C, Rebischung C, Revuelta JL, Riles L, Roberts CJ, Ross-MacDonald P, Scherens B, Snyder M, Sookhai-Mahadeo S, Storms RK, Veronneau S, Voet M, Volckaert G, Ward TR, Wysocki R, Yen GS, Yu K, Zimmerman K, Philippsen P, Johnston M, Davis RW (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906

    Article  CAS  PubMed  Google Scholar 

  • Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124:471–484

    Article  CAS  PubMed  Google Scholar 

  • Yang R, Wek SA, Wek RC (2000) Glucose limitation induces GCN4 translation by activation of Gcn2 protein kinase. Mol Cell Biol 20:2706–2717

    Article  CAS  PubMed  Google Scholar 

  • Zou S, Meadows S, Sharp L, Jan LY, Jan YN (2000) Genome-wide study of aging and oxidative stress response in Drosophila melanogaster. Proc Natl Acad Sci USA 97:13726–13731

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George L. Sutphin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sutphin, G.L., Kennedy, B.K. (2009). Aging: Evolutionary Theory Meets Genomic Approaches. In: Pontarotti, P. (eds) Evolutionary Biology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-00952-5_20

Download citation

Publish with us

Policies and ethics