Skip to main content

A Developed Zeeman Model for HRV Signal Generation in Different Stages of Sleep

  • Conference paper
13th International Conference on Biomedical Engineering

Part of the book series: IFMBE Proceedings ((IFMBE,volume 23))

Abstract

Heart Rate Variability (HRV) is a sophisticated measure of an important and fundamental aspect of an individual’s physiology. Heart rate variability (HRV) measurement is an important tool in cardiac diagnosis that can provide clinicians and researchers with a 24-hour noninvasive measure of autonomic nervous system activity. Heart Rate Variability is analyzed in two ways, either over time (Time Domain) or in terms of the frequency of changes in heart rate (Frequency Domain). Preliminarily studying on the different effects of sleep on HRV signal can be useful for finding out the function of autonomic nervous system (ANS) on heart rate. In this paper, we consider a HRV signal for one normal person in different sleep stages: stage1, stage2, stage3 and REM. Therefore, we use FFT on HRV signal and show differences in various stages. In addition, we evaluate these differences in quantitative and qualitative. This model can be used as a basic one for developing models to generate artificial HRV signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. de Boer, R.W., Karmaker, J.M., Strackee, J., 1987. Hemodynamic fluctuations and baroreflex sensitivity in humans: a beat-to-beat model. Am. J. Physiol. 253, 680–689.

    Google Scholar 

  2. Braunwald, E., Zipes, D.P., Libby, P., Bonow, R., 2004. Heart Disease: a Textbook of Cardiovascular Medicine. W.B. Saunders Company.

    Google Scholar 

  3. Brennan, M., Palaniswami, M., Kamen, P.W., 1998. A new cardiac nervous system model for heart rate variability analysis. Proceedings of the 20th Annual International Conference of IEEE Engineering in Medicine and Biology Society 20, 340–352.

    Google Scholar 

  4. Jafarnia-Dabanloo, N., McLernon, D.C., Ayatollahi, A., Johari-Majd, V., 2004. A nonlinear model using neural networks for generating electrocardiogram signals. Proceedings of the IEE MEDSIP Conference, Malta, 41–45.

    Google Scholar 

  5. Jones, D.S., Sleeman, B.D., 2003. Differential Equations and Mathemat cal Biology. Chapman & Hall, London.

    Book  Google Scholar 

  6. Lavie, P., 1996. The Enchanted World of Sleep. Yale University Press, New Haven.

    Google Scholar 

  7. N. Jafarnia-Dabanlooa, D.C. McLernona,, H. Zhangb, A. Ayatollah, V. Johari-Majdd. A modified Zeeman model for producing HRV signals and its application to ECG signal generation Journal of Theoretical Biology 244 (2007) 180–189

    Article  MathSciNet  Google Scholar 

  8. S Parvaneh, M Pashna, 2007. Electrocardiogram Synthesis Using a Gaussian Combination Model (GCM), Computers in Cardiology 2007; 34:621624.

    Google Scholar 

  9. Malik, M., Camm, A.J., 1995. Heart Rate Variability. Futura Publication Comp., New York.

    Google Scholar 

  10. McSharry, P.E., Clifford, G., Tarassenko, L., Smith, L.A., 2002. Method for generating an artificial RR tachogram of a typical healthy human over 24-hours. Proc. Compute. Cardiol. 29, 225–228.

    Article  Google Scholar 

  11. McSharry, P.E., Clifford, G., Tarassenko, L., Smith, L.A., 2003. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 50(3), 289–294.

    Article  Google Scholar 

  12. Park, J., Sandberg, J.W., 1991. Universal approximation using radial basis functions network. Neural Compute. 3, 246–257.

    Article  Google Scholar 

  13. Suckley, R., Biktashev, V.N., 2003. Comparison of asymptotic of heart and nerve excitability. Phys. Rev. E 68.

    Google Scholar 

  14. Tu Pierre, N.V., 1994. Dynamical Systems-an Introduction with Applications in Economics and Biology, 2e. Springer, Berlin.

    MATH  Google Scholar 

  15. Zeeman, E.C., 1972a. Differential Equations for the Heartbeat and Nerve Impulse. Mathematics Institute, University of Warwick, Coventry, UK.

    MATH  Google Scholar 

  16. Zeeman, E.C., 1972b. Differential equations for the heartbeat and nerve impulse. In: Waddington, C.H. (Ed.), Towards a Theoretical Biology, vol. 4. Edinburgh University Press.

    Google Scholar 

  17. Zeeman, E.C., 1977. Catastrophe Theory. Selected Papers 1972-1977. Addison-Wesley, Reading, MA.

    MATH  Google Scholar 

  18. Zhang, H., Holden, A.V., Boyett, M.R., 2001. Modeling the effect of beta-adrenergic stimulation on rabbit senatorial node. J. Physiology. 533, 38–39.

    Google Scholar 

  19. Zhang, H., Holden, A.V., Noble, D., Boyett, M.R., 2002. Analysis of the chronoscopic effect of acetylcholine on sinoatrial node. J. Cardiovascular. Electrophysiology. 13, 465–474.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 International Federation of Medical and Biological Engineering

About this paper

Cite this paper

Abad, S.L.M., Dabanloo, N.J., Jameie, S.B., Sadeghniiat, K. (2009). A Developed Zeeman Model for HRV Signal Generation in Different Stages of Sleep. In: Lim, C.T., Goh, J.C.H. (eds) 13th International Conference on Biomedical Engineering. IFMBE Proceedings, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92841-6_53

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-92841-6_53

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-92840-9

  • Online ISBN: 978-3-540-92841-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics