Skip to main content

Intra-oceanic Subduction Zones

  • Chapter
  • First Online:
Arc-Continent Collision

Part of the book series: Frontiers in Earth Sciences ((FRONTIERS))

Abstract

Modern intra-oceanic subduction zones comprise around 17,000 km (~40%) of the convergent margins of the Earth and are subjects of intense cross-disciplinary studies that are reviewed in this chapter. Most of these subduction zones exhibit trench retreat, do not accrete sediments and are affected by back-arc extension processes. Initiation of intra-oceanic subduction zones is partly enigmatic although two major types of subduction nucleation scenarios are proposed: induced and spontaneous. Internal structure and compositions of intra-oceanic arcs are strongly variable. Both along- and across-arc variation of crustal thickness and lithological structure are inferred based on seismological data. In the base of intra-oceanic arcs, a crust–mantle transitional layer is often detected by seismic velocity studies. This layer of debatable thickness and origin is interpreted as being the result of deep magmatic processes and may potentially include cumulates, replacive rocks and intercalation of various rocks and melts. The vast majority of basaltic magmas erupted in the arcs are too MgO-poor to represent the parental high-MgO mantle-derived magma. Magma fractionation and reactive flow models are suggested to explain this MgO-paradox, the uncertainty is related to yet limited knowledge of deep crustal, and mantle processes under the arcs. Exhumation of high- and ultrahigh-pressure crustal and mantle rocks during intra-oceanic subduction is strongly controlled by a serpentinized subduction channel developing at the plate boundary. This channel composed of intermixed rheologically weak crustal and mantle rocks presumably forms by hydration of the overriding plate and accretion of subducted upper oceanic crust. At a mature stage of subduction the channel may also incorporate newly formed magmatic arc crust and depleted mantle rocks from the base of the arc lithosphere. An array of diverse both clockwise and counterclockwise P–T paths rather than a single P–T trajectory is characteristic for high-pressure rock melanges forming in the serpentinized channels. Crustal growth intensity in intra-oceanic arcs (40–180 km3/km/Myr) is variable in both space and time and may strongly depend on subduction rate as well as on intensity and character of thermal-chemical convection in the mantle wedge driven by slab dehydration and mantle melting. Such convection can possibly include hydrated diapiric structures (cold plumes) rising from the slab and producing hybrid magmatic rocks by melting of subducted rock melanges. Subduction-related arc basalts characteristically have elevated contents of large-ion lithophile element (LILEs) and light rare earth element (LREEs) with depleted heavy REE (HREE) and high field strength elements (HFSEs) compared to subducted oceanic crust. The exact origin of geochemical variations in arc basalts is debatable and may involve a range of processes such as (a) extraction of fluids and/or melts from the subducted slab, (b) fluid-fluxed and decompression melting of the mantle wedge, (c) slab melt–mantle reactions, (d) melting of mantle wedge metasomatized by slab-derived fluid or melt, (e) direct supply of felsic melt from eclogitic slab melting, (f) melting of hydrated mantle and subducted tectonic melanges in thermal-chemical plumes. Water concentrations in back-arc mantle sources increase toward the trench. Back-arc basin spreading combines mid-ocean-ridge-like adiabatic decompression melting with nonadiabatic fluid-fluxed mantle melting depending on the H2O supply from the subducting plate. Numerical modelling results predict that water-rich mantle sources should mainly concentrate at 100–250 km distances from the trench in proximity of water-rich, depleted and chemically buoyant “cold nose” of the mantle wedge. In conclusion, despite recent progress in both observation and modelling many of the first-order features of intra-oceanic subduction remain only partly known and require further cross-disciplinary efforts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbott RN, Draper G, Broman BN (2006) P-T path for ultrahigh-pressure garnet ultramafic rocks of the Cuaba Gneiss, Rio San Juan complex, Dominican Republic. Int Geol Rev 48:778–790

    Google Scholar 

  • Afonso JC, Ranalli G, Fernandez M (2007) Density structure and buoyancy of the oceanic lithosphere revisited. Geophy Res Lett 34, Article Number: L10302

    Google Scholar 

  • Afonso JC, Zlotnik S, Fernandez M (2008) Effects of compositional and rheological stratifications on small-scale convection under the oceans: implications for the thickness of oceanic lithosphere and seafloor flattening. Geophys Res Lett 35, Article Number: L20308

    Google Scholar 

  • Alvarez-Marron J, Perez-Estaun A, Danobeitia JJ, Pulgar JA, Martinez Catalan JR, Marcos A, Bastida E, Ayarza Arribas R, Aller J, Gallart A, Gonzalez-Lodeiro E, Banda E, Comas MC, Cordoba D (1996) Seismic structure of the northern continental margin of Spain from ESCIN deep seismic profiles. Tectonophysics 264:153–174

    Google Scholar 

  • Alvarez-Marron J, Rubio E, Torne M (1997) Subduction-related structures in the North Iberian Margin. J Geophys Res 102:22497–22511

    Google Scholar 

  • Arai S, Ishimaru S (2008) Insights into petrological characteristics of the lithosphere of mantle wedge beneath arcs through peridotite xenoliths: a review. J Petrol 49:665–695

    Google Scholar 

  • Arcay D, Tric E, Doin MP (2005) Numerical simulations of subduction zones: effect of slab dehydration on the mantle wedge dynamics. Phys Earth Planet Inter 149:133–153

    Google Scholar 

  • Arculus RJ, Johnson RW (1981) Island-arc magma sources: a geochemical assessment of the roles of slab derived components and crustal contamination. Geochem J 15:109–133

    Google Scholar 

  • Billen M, Gurnis M (2001) A low viscosity wedge in subduction zones. Earth Planet Sci Lett 193:227–236

    Google Scholar 

  • Bourdon B, Turner S, Dosseto A (2003) Dehydration and partial melting in subduction zones: constraints from U-series disequilibria. J Geophys Res 108, Article Number: 2291

    Google Scholar 

  • Boyd OS, Jones CH, Sheehan AF (2004) Foundering lithosphere imaged beneath the southern Sierra Nevada, California, USA. Science 305:660–662

    Google Scholar 

  • Burg JP (2011) The Asia-Kohistan-India collision. Review and discussion. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Burg J-P, Bodinier J-L, Gerya T, Bedini R-M, Boudier F, Dautria J-M, Prikhodko V, Efimov A, Pupier E, Balanec J-L (2009) Translithospheric mantle diapirism: geological evidence and numerical modelling of the Kondyor zoned ultramafic complex (Russian Far-East). J Petrol 50:289–321

    Google Scholar 

  • Calvert AJ (2011) The seismic structure of island arc crust. In: Brown D, Ryan P (eds) Arc-continent collision: the making of an orogen, Frontiers in earth sciences. Springer, Heidelberg

    Google Scholar 

  • Casey JF, Dewey JF (1984) Initiation of subduction zones along transforms and accreting plate boundaries, triple junction evolution, and forearc spreading centers: implications for ophiolitic geology and obduction. In: Gass IG, Lippard SJ, Shelton AW (eds) Ophiolites and oceanic lithosphere, vol 13. Geol Soc Spec Publ, London, pp 269–290

    Google Scholar 

  • Castro A, Gerya TV (2008) Magmatic implications of mantle wedge plumes: experimental study. Lithos 103:138–148

    Google Scholar 

  • Castro A, García-Casco A, Fernández C, Corretgé LG, Moreno-Ventas I, Gerya T, Löw I (2009) Ordovician ferrosilicic magmas: experimental evidence for ultrahigh temperatures affecting a metagreywacke source. Gondwana Res 16:622–632

    Google Scholar 

  • Castro A, Gerya T, Garcia-Casco A, Fernandez C, Diaz-Alvarado J, Moreno-Ventas I, Low I (2010) Melting relations of MORB-sediment melanges in underplated mantle wedge plumes; implications for the origin of Cordilleran-type batholiths. J Petrol 51:1267–1295

    Google Scholar 

  • Churikova T, Dorendorf F, Worner G (2001) Sources and fluids in the mantle wedge below Kamchatka, evidence from across-arc geochemical variation. J Petrol 42:1567–1593

    Google Scholar 

  • Cloetingh SAPL, Wortel MJR, Vlaar NJ (1982) Evolution of passive continental margins and initiation of subduction zones. Nature 297:139–142

    Google Scholar 

  • Cloos M (1982) Flow melanges: numerical modelling and geologic constraints on their origin in the Fransiscan subduction complex, California. Geol Soc Am Bull 93:330–345

    Google Scholar 

  • Cloos M (1993) Lithospheric buoyancy and collisional orogenesis: subduction of oceanic plateaus, continental margins, island arcs, spreading ridges, and seamounts. Geol Soc Am Bull 105:715–737

    Google Scholar 

  • Cloos M, Shreve RL (1988a) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins, 1, Background and description. Pure Appl Geophys 128:455–500

    Google Scholar 

  • Cloos M, Shreve RL (1988b) Subduction-channel model of prism accretion, melange formation, sediment subduction, and subduction erosion at convergent plate margins, 2, Implications and discussion. Pure App Geophys 128:501–545

    Google Scholar 

  • Collins WJ (2003) Slab pull, mantle convection, and Pangaean assembly and dispersal. Earth Planet Sci Lett 205:225–237

    Google Scholar 

  • Conder JA, Wiens DA (2007) Rapid mantle flow beneath the Tonga volcanic arc. Earth Planet Sci Lett 264:299–307

    Google Scholar 

  • Conrad WK, Kay RW (1984) Ultramafic and mafic inclusions from Adak Island; crystallization history, and implications for the nature of primary magmas and crustal evolution in the Aleutian arc. J Petrol 25:88–125

    Google Scholar 

  • Davidson JP (1996) Deciphering mantle and crustal signatures in subduction zone magmatism. In: Bebout GE, Scholl DW, Kirby SH, Platt JR (eds) Subduction top to bottom. American Geophysical Union Monographs, vol 96., pp 251–262

    Google Scholar 

  • Davies GF (1999) Dynamic Earth. Cambridge University Press, New York

    Google Scholar 

  • Davies JH, Stevenson DJ (1992) Physical model of source region of subduction zone volcanics. J Geophys Res 97:2037–2070

    Google Scholar 

  • Defant MJ, Drummond MS (1990) Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature 347:662–665

    Google Scholar 

  • Dewey JF (1969) Continental margins: a model for conversion of Atlantic type to Andean type. Earth Planet Sci Lett 6:189–197

    Google Scholar 

  • Dickinson WR, Seely DR (1979) Structure and stratigraphy of fore-arc regions. Am Assoc Petrol Geol Bull 63:2–31

    Google Scholar 

  • Dimalanta C, Taira A, Yumul GP, Tokuyama H, Mochizuki K (2002) New rates of western Pacific island arc magmatism from seismic and gravity data. Earth Planet Sci Lett 202:105–115

    Google Scholar 

  • Doin M-P, Henry P (2001) Subduction initiation and continental crust recycling: the roles of rheology and eclogitization. Tectonophysics 342:163–191

    Google Scholar 

  • Dosseto A, Bourdon B, Joron J-L, Dupre B (2003) U-Th-Pa-Ra study of the Kamchatka arc: new constraints on the genesis of arc lavas. Geochem Cosmochem Acta 67:2857–2877

    Google Scholar 

  • Eiler JM, Carr MJ, Reagan M, Stolper EM (2005) Oxygen isotope constraints on the sources of Central American arc lavas. Geochem Geophys Geosyst 6, Article Number: Q07007

    Google Scholar 

  • Eiler JM, Schiano P, Valley JM, Kita NT, Stolper EM (2007) Oxygen-isotope and trace element constraints on the origins of silica-rich melts in the subarc mantle. Geochem Geophys Geosyst 8, Article Number: Q09012

    Google Scholar 

  • Elliott T (2003) Tracers of the slab. In: Eiler J (ed) Inside the subduction factory. American Geophysical Union, Washington, DC, pp 23–46

    Google Scholar 

  • Elliott T, Plank T, Zindler A, White W, Bourdon B (1997) Element transport from slab to volcanic front at the Mariana arc. J Geophys Res 102:14991–15019

    Google Scholar 

  • Erickson SG (1993) Sedimentary loading, lithospheric flexure, and subduction initiation at passive margins. Geology 21:125–128

    Google Scholar 

  • Ernst WG (1977) Mineral parageneses and plate tectonic settings of relatively high-pressure metamorphic belts. Fortschr Miner 54:192–222

    Google Scholar 

  • Federico L, Crispini L, Scambelluri M, Capponi G (2007) Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology 35:499–502

    Google Scholar 

  • Fyfe WS, Leonardos OH (1977) Speculations on causes of crustal rifting and subduction, with applications to Atlantic margin of Brazil. Tectonophysics 42(1):29–36

    Google Scholar 

  • George R, Turner S, Hawkesworth C, Morris J, Nye C, Ryan J, Zheng S-H (2003) Melting processes and fluid and sediment transport rates along the Alaska-Aleutian arc from an integrated U-Th-Ra-Be isotope study. J Geophys Res 108, doi:10.1029/2002JB001916

  • Gerya TV, Burg J-P (2007) Intrusion of ultramafic magmatic bodies into the continental crust: numerical simulation. PEPI 160:124–142

    Google Scholar 

  • Gerya TV, Meilick FI (2011) Geodynamic regimes of subduction under an active margin: effects of rheological weakening by fluids and melts. J Metamorphic Geol 29:7–31

    Google Scholar 

  • Gerya TV, Yuen DA (2003) Rayleigh-Taylor instabilities from hydration and melting propel “cold plumes” at subduction zones. Earth Planet Sci Lett 212:47–62

    Google Scholar 

  • Gerya TV, Stoeckhert B, Perchuk AL (2002) Exhumation of high-pressure metamorphic rocks in a subduction channel – a numerical simulation. Tectonics 21, Article Number: 1056

    Google Scholar 

  • Gerya TV, Yuen DA, Sevre EOD (2004) Dynamical causes for incipient magma chambers above slabs. Geology 32:89–92

    Google Scholar 

  • Gerya TV, Connolly JAD, Yuen DA, Gorczyk W, Capel AM (2006) Sesmic implications of mantle wedge plumes. Phys Earth Planet Inter 156:59–74

    Google Scholar 

  • Gerya TV, Connolly JAD, Yuen DA (2008) Why is terrestrial subduction one-sided? Geology 36:43–46

    Google Scholar 

  • Gorczyk W, Gerya TV, Connolly JAD, Yuen DA, Rudolph M (2006) Large-scale rigid-body rotation in the mantle wedge and its implications for seismic tomography. Geochem Geophys Geosyst 7, Article Number: Q05018

    Google Scholar 

  • Gorczyk W, Guillot S, Gerya TV, Hattori K (2007a) Asthenospheric upwelling, oceanic slab retreat, and exhumation of UHP mantle rocks: insights from Greater Antilles. Geophys Res Lett 34, Article Number: L21309

    Google Scholar 

  • Gorczyk W, Gerya TV, Connolly JAD, Yuen DA (2007b) Growth and mixing dynamics of mantle wedge plumes. Geology 35:587–590

    Google Scholar 

  • Goren L, Aharonov E, Mulugeta G, Koyi HA, Mart Y (2008) Ductile deformation of passive margins: a new mechanism for subduction initiation. J Geophys Res 113, Article Number: B08411

    Google Scholar 

  • Grove TL, Chatterjee N, Parman SW, Medard E (2006) The influence of H2O on mantle wedge melting. Earth Planet Sci Lett 249:74–89

    Google Scholar 

  • Gurnis M, Hall C, Lavier L (2004) Evolving force balance during incipient subduction. Geochem Geophys Geosyst 5, Article Number Q07001

    Google Scholar 

  • Hall PS, Kincaid C (2001) Diapiric flow at subduction zones: a recipe for rapid transport. Science 292:2472–2475

    Google Scholar 

  • Hall C, Gurnis M, Sdrolias M, Lavier LL, Müller RD (2003) Catastrophic initiation of subduction following forced convergence across fracture zones, Earth Planet. Sci Lett 212:15–30

    Google Scholar 

  • Hauff F, Hoernle K, Schmidt A (2003) Sr-Nd-Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): implications for alteration of ocean crust and the input into the Izu-Bonin-Mariana subduction system. Geochem Geophys Geosyst 4, Article Number: 8913

    Google Scholar 

  • Hawkesworth CJ, Gallagher K, Hergt JM, McDermott F (1993) Trace element fractionation processes in the generation of island arc basalts. Philos Trans R Soc London Ser A 342:179–191

    Google Scholar 

  • Hawkesworth CJ, Turner SP, McDermott F, Peate DW, van Calsteren P (1997) U-Th isotopes in arc magmas: implications for element transfer from the subducted crust. Science 276:551–555

    Google Scholar 

  • Hebert LB, Antoshechkina P, Asimow P, Gurnis M (2009) Emergence of a low-viscosity channel in subduction zones through the coupling of mantle flow and thermodynamics, Earth Planet. Sci Lett 278:243–256

    Google Scholar 

  • Hermann J, Muntener O, Scambelluri M (2000) The importance of serpentinite mylonites for subduction and exhumation of oceanic crust. Tectonophysics 327:225–238

    Google Scholar 

  • Hilde TWE, Uyeda S, Kroenke L (1976) Evolution of the western Pacific and its margin. Tectonophysics 38:145–165

    Google Scholar 

  • Holbrook WS, Lizarralde D, McGeary S, Bangs N, Diebold J (1999) Structure and composition of Aleutian island arc and implications for continental crustal growth. Geology 27:31–34

    Google Scholar 

  • Honda S, Saito M (2003) Small-scale convection under the back-arc occurring in the low viscosity wedge, Earth Planet. Sci Lett 216:703–715

    Google Scholar 

  • Honda S, Yoshida T (2005) Application of the model of small-scale convection under the island arc to the NE Honshu subduction zone. Geochem Geophys Geosyst 6, Article Number: Q06004

    Google Scholar 

  • Honda S, Saito M, Nakakuki T (2002) Possible existence of small-scale convection under the back arc. Geophys Res Lett 29:20–43

    Google Scholar 

  • Honda S, Yoshida T, Aoike K (2007) Spatial and temporal evolution of arc volcanism in the northeast Honshu and Izu-Bonin arcs: evidence of small-scale convection under the island arc? Isl Arc 16:214–223

    Google Scholar 

  • Honda S, Gerya T, Zhu G (2010) A simple three-dimensional model of thermo–chemical convection in the mantle wedge. Earth Planet Sci Lett 290:311–318

    Google Scholar 

  • Hsu KJ (1971) Franciscan melange as a model for eugeosunclinal sedimentation and underthrusting tectonics. J Geophys Res 76:1162–1170

    Google Scholar 

  • Ishikawa T, Nakamura E (1994) Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes. Nature 370:205–208

    Google Scholar 

  • Ishikawa T, Tera F (1999) Two isotopically distinct fluid components involved in the Mariana Arc: evidence from Nb/B ratios and B, Sr, Nd, and Pb isotope systematic. Geology 27:83–86

    Google Scholar 

  • Ishizuka O, Taylor RN, Milton JA, Nesbitt RW (2003) Fluid-mantle interaction in an intra-oceanic arc: constraints from high-precision Pb isotopes, Earth Planet. Sci Lett 211:221–236

    Google Scholar 

  • Ishizuka O, Taylor RN, Milton JA, Nesbitt RE, Yuasa M, Sakamoto I (2006) Variation in the mantle sources of the northern Izu arc with time and space – Constraints from high-precision Pb isotopes. J Volcanol Geotherm Res 156:266–290

    Google Scholar 

  • Ito E, Stern RJ (1986) Oxygen-isotopic and strontium isotopic investigations of subduction zone volcanism – the case of the Volcano Arc and the Marianas Island-Arc. Earth Planet Sci Lett 76:312–320

    Google Scholar 

  • Iwamori H (1998) Transportation of H2O and melting in subduction zones, Earth Planet. Sci Lett 160:65–80

    Google Scholar 

  • Iwamori H (2007) Transportation of H2O beneath the Japan arcs and its implications for global water circulation. Chem Geol 239:182–198

    Google Scholar 

  • Jagoutz O, Müntener O, Burg J-P, Ulmer P, Jagoutz E (2006) Lower continental crust formation through focused flow in km-scale melt conduits: the zoned ultramafic bodies of the Chilas Complex in the Kohistan island arc (NW Pakistan). Earth Planet Sci Lett 242:320–342

    Google Scholar 

  • Jull M, Kelemen PB (2001) On the conditions for lower crustal convective instability, J. Geophys. Res., B. Solid Earth Planets 106:6423–6446

    Google Scholar 

  • Jung H, Karato S (2001) Water-induced fabric transitions in olivine. Science 293:1460–1463

    Google Scholar 

  • Karig DE (1982) Initiation of subduction zones: implications for arc evolution and ophiolite development. Geol Soc Lond Spec Pub 10:563–576

    Google Scholar 

  • Karson J, Dewey JF (1978) Coastal Complex, western Newfoundland: an early Ordovician oceanic fracture zone. BullGeol Soc Amer 89:1037–1049

    Google Scholar 

  • Kay SM, Kay RW (1985) Aleutian tholeiitic and calc-alkaline magma series: 1. The mafic phenocrysts. Contrib Mineral Petrol 90:276–290

    Google Scholar 

  • Kay SM, Kay RW (1991) Creation and destruction of lower continental crust. In: Stoeckhert B, Wedepohl KH (eds) Crustal dynamics; pathways and records, International Journal of Earth Sciences, vol 80, 2, Springer, Berlin, pp 259–278

    Google Scholar 

  • Kay SM, Kay RW (1993) Delamination and delamination magmatism. In: Green AG, Kroener A, Goetze HJ, Pavlenkova N (eds) New horizons in strong motion; seismic studies and engineering practice, Tectonophysics, vol 219, 1–3, Elsevier, Amsterdam, Netherlands, pp 177–189

    Google Scholar 

  • Kelemen PB, Hart SR, Bernstein S (1998) Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet Sci Lett 164:387–406

    Google Scholar 

  • Kelemen P, Hanghoj K, Greene A (2003) One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier Pergamon, Oxford, pp 593–659

    Google Scholar 

  • Kelemen PB, Rilling JL, Parmentier EM, Mehl L, Hacker BR (2004a) Thermal structure due to solid-state flow in the mantle wedge beneath arcs. In: Eiler JM (ed) Inside the subduction factory, vol 138, Geophys Monogr Ser. AGU, Washington, DC, pp 293–311

    Google Scholar 

  • Kelemen PB, Yogodzinski GM, Scholl DW (2004b) Along-strike variation in the Aleutian island arc: genesis of high Mg# andesite and implications for continental crust. In: Eiler JM (ed) Inside the subduction factory, vol 138, Geophys Monogr Ser. AGU, Washington, DC, pp 223–276

    Google Scholar 

  • Kelley KA, Plank T, Grove TL, Stolper EM, Newman S, Hauri E (2006) Mantle melting as a function of water content beneath back-arc basins. J Geophys Res 111, Article Number: B09208

    Google Scholar 

  • Kemp DV, Stevenson DJ (1996) A tensile, flexural model for the initiation of subduction. Geophys J Int 125:73–94

    Google Scholar 

  • Kessel R, Schmidt MW, Pettke T, Ulmer P (2005) The trace element signature of subduction zone fluids, melts, and supercritical liquids at 120–180 km depth. Nature 437:724–727

    Google Scholar 

  • Kimura J-I, Stern RJ (2009) Neogene volcanism of the Japan island arc: the K-h relationship revisited. In: Circum pacific tectonics, geologic evolution, and ore deposits. Arizona Geological Society Digest, Arizona Geological Society, Tucson, vol 22, pp 187–202

    Google Scholar 

  • Kimura J, Yoshida T (2006) Contributions of slab fluid, mantle wedge and crust to the origin of quaternary lavas in the NE Japan arc. J Petrol 47:2185–2232

    Google Scholar 

  • Kimura J-I, Stern RJ, Yoshida T (2005) Re-initiation of subduction and magmatic responses in SW Japan during Neogene time. Geol Soc Am Bull 117:969–986

    Google Scholar 

  • Kimura J-I, Hacker B.R, van Keken PE, Kawabata H,Yoshida T, Stern RJ (2009) Arc basalt simulator version 2, a simulation for slab dehydration and fluid-fluxed mantle melting for arc basalts: modeling scheme and application. Geochem Geophys Geosyst 10, Article Number: Q09004

    Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Ito A, Tamura Y, Tatsumi Y, Kaneda Y (2006) Seismological evidence for variable growth of crust along the Izu intraoceanic arc. J Geophys Res 112, Article Number: B05104

    Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Miura S, Tamura Y, Tatsumi Y, Kaneda Y (2007) New seismological constraints on growth of continental crust in the Izu-Bonin intra-oceanic arc. Geology 35:1031–1034

    Google Scholar 

  • Kodaira S, Sato T, Takahashi N, Yamashita M, No T, Kaneda Y (2008) Seismic imaging of a possible paleoarc in the Izu-Bonin intraoceanic arc and its implications for arc evolution processes. Geochem Geophys Geosyst 9, Article Number: Q10X01

    Google Scholar 

  • Krebs M, Maresch WV, Schertl H-P, Münker C, Baumann A, Draper G, Idleman B, Trapp E (2008) The dynamics of intra-oceanic subduction zones: a direct comparison between fossil petrological evidence (Rio San Juan Complex, Dominican Republic) and numerical simulation. Lithos 103:106–137

    Google Scholar 

  • Kushiro I, Syono Y, Akimoto S (1968) Melting of a peridotite nodule at high pressures and high water pressures. J Geophys Res 73:6023–6029

    Google Scholar 

  • Leat PT, Larter RD (2003) Intra-oceanic subduction systems: introduction. In: Larter RD, Leat PT (eds) Intra-oceanic subduction systems: tectonic and magmatic processes, vol 219. Geological Society of London, Special Publications, London, pp 1–17

    Google Scholar 

  • Leat PT, Riley TR, Wareham CD, Millar IL, Kelley SP, Storey BC (2002) Tectonic setting of primitive magmas in volcanic arcs: an example from the Antarctic Peninsula. J Geol Soc Lond 159:31–44

    Google Scholar 

  • Manea VC, Manea M, Kostoglodov V, Sewell G (2005) Thermo-mechanical model of the mantle wedge in Central Mexican subduction zone and a blob tracing approach for the magma transport. Phys Earth Planet Inter 149:165–186

    Google Scholar 

  • Manning CE (2004) The chemistry of subduction-zone fluids. Earth Planet Sci Lett 223:1–16

    Google Scholar 

  • Marques FO, Gerya T, Nikolaeva K (2008) Subduction initiation at a passive margin: a prototype candidate. 33rd IGC, Abstract Volume, Oslo, Norway

    Google Scholar 

  • Mart Y, Aharonov E, Mulugeta G, Ryan W, Tentler T, Goren L (2005) Analogue modelling of the initiation of subduction. Geophys J Int 160:1081–1091

    Google Scholar 

  • Martin H (1999) Adakitic magmas: modern analogues of Archaean granitoids. Lithos 46:411–429

    Google Scholar 

  • Martin H, Smithies RH, Rapp R, Moyen J-F, Champion D (2005) An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos 79:1–24

    Google Scholar 

  • Maruyama S, Liou JG, Terabayashi M (1996) Blueschists and eclogites in the world and their exhumation. Int Geol Rev 38:485–594

    Google Scholar 

  • Masson DG, Cartwright JA, Pinheiro LM, Whitmarsh RB, Beslier M-O, Roeser H (1994) Compressional deformation at the ocean–continent transition in the NE Atlantic. J Geol Soc London 151:607–613

    Google Scholar 

  • McCulloch MT, Gamble JA (1991) Geochemical and geodynamical constraints on subduction zone magmatism. Earth Planet Sci Lett 102:358–374

    Google Scholar 

  • McKenzie DP (1977) The initiation of trenches: a finite amplitude instability. In: Talwani M, Pitman WC III (eds) Island arcs, deep sea trenches and back-arc basins, vol 1, Maurice Ewing Series. AGU, Washington, DC, pp 57–61

    Google Scholar 

  • Mitchell AHG (1984) Initiation of subduction of post-collision foreland thrusting and back-thrusting. J Geodyn 1:103–120

    Google Scholar 

  • Moriguti T, Shibata T, Nakamura E (2004) Lithium, boron and lead isotope and trace element systematics of Quaternary basaltic volcanic rocks in northeastern Japan: mineralogical controls on slab-derived fluid composition. Chem Geol 212:81–100

    Google Scholar 

  • Müeller S, Phillips RJ (1991) On the initiation of subduction. J Geophys Res 96:651–665

    Google Scholar 

  • Müntener O, Kelemen PB, Grove TL (2001) The role of H2O during crystallization of primitive arc magmas under uppermost mantle conditions and genesis of igneous pyroxenites; an experimental study. Contrib Mineral Petrol 141:643–658

    Google Scholar 

  • Nakajima J, Hasegawa A (2003a) Estimation of thermal structure in the mantle wedge of northeastern Japan from seismic attenuation data. Geophys Res Lett 30, Article Number: 1760

    Google Scholar 

  • Nakajima J, Hasegawa A (2003b) Tomographic imaging of seismic velocity structure in and around the Onikobe volcanic area, northeastern Japan: implications for fluid distribution. J Volcanol Geotherm Res 127:1–18

    Google Scholar 

  • Nikolaeva K, Gerya TV, Connolly JAD (2008) Numerical modelling of crustal growth in intraoceanic volcanic arcs. Phys Earth Planet Inter 171:336–356

    Google Scholar 

  • Nikolaeva K, Gerya TV, Marques FO (2010) Subduction initiation at passive margins: numerical modeling. J Geophys Res 115, Article Number: B03406

    Google Scholar 

  • Niu Y, O’Hara MJ, Pearce JA (2003) Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective. J Petrol 44(5):851–866

    Google Scholar 

  • Obata M, Takazawa E (2004) Compositional continuity and discontinuity in the Horoman peridotite, Japan, and its implication for melt extraction processes in partially molten upper mantle. J Petrol 45:223–234

    Google Scholar 

  • Oxburg ER, Parmentier EM (1977) Compositional and density stratification in oceanic lithosphere – causes and consequences. J Geol Soc London 133:343–355

    Google Scholar 

  • Pascal C, Cloetingh SAPL (2009) Gravitational potential stresses and stress field of passive continental margins: insights from the south-Norway shelf. Earth Planet Sci Lett 277:464–473

    Google Scholar 

  • Peacock SM, Wang K (1999) Seismic consequence of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science 286:937–939

    Google Scholar 

  • Pearce JA, Peate DW (1995) Tectonic implications of the composition of volcanic arc magmas. Annu Rev Earth Planet Sci 23:251–285

    Google Scholar 

  • Pearce JA, Stern RJ, Bloomer SH, Fryer P (2005) Geochemical mapping of the Mariana arc-basin system: implications for the nature and distribution of subduction components. Geochem Geophys Geosyst 6, Article Number: Q07006

    Google Scholar 

  • Pichavant M, Macdonald R (2003) Mantle genesis and crustal evolution of primitive calc-alkaline basaltic liquids from the Lesser Antilles arc. In: Larter RD, Leat PT (eds) Intra-oceanic Subduction Systems: Tectonic and Magmatic Processes, vol 219. Geological Society of London, Special Publications, London, pp 239–254

    Google Scholar 

  • Plank T, Langmuir CH (1993) Tracing trace-elements from sediment input to volcanic output at Subduction Zones. Nature 362:739–743

    Google Scholar 

  • Platt JP (1993) Exhumation of high-pressure rocks: a review of concepts and processes. Terra Nova 5:119–133

    Google Scholar 

  • Poli S, Schmidt MW (1995) H2O transport and release in subduction zones: experimental constraints on basaltic and andesitic systems. J Geophys Res 100:22299–22314

    Google Scholar 

  • Poli S, Schmidt MW (2002) Petrology of subducted slabs. Annu Rev Earth Planet Sci 30:207–235

    Google Scholar 

  • Pysklywec RN, Mitrovica JX, Ishii M (2003) Mantle avalanche as a driving force for tectonic reorganization in the southwest Pacific. Earth Planet Sci Lett 209:29–38

    Google Scholar 

  • Rapp EP, Watson EB (1995) Dehydration melting of metabasalt at 8–32 kbar: implications for continental growth and crustal-mantle recycling. J Petrol 36:891–931

    Google Scholar 

  • Regenauer-Lieb K, Yuen DA, Branlund J (2001) The initiation of subduction: critically by addition of water? Science 294:578–580

    Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    Google Scholar 

  • Ring U, Brandon MT, Willett SD, Lister GS (1999) Exhumation processes. In: Ring U, Brandon MT, Lister GS, Willett SD (eds) Exhumation processes: normal faulting, ductile flow, and erosion, Geological Society, London, Special Publications, 154, pp 1–27

    Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed) The crust, treatise on geochemistry, vol 3. Elsevier, Oxford, pp 1–64

    Google Scholar 

  • Ryan JG, Morris J, Tera F, Leeman WP, Tsvetkov A (1995) Cross-arc geochemical variations in the Kurile Arc as a function of slab depth. Science 270:625–627

    Google Scholar 

  • Sajona FG, Maury RC, Bellon H, Cotten J, Defant M (1996) High field strength element enrichment of Pliocene-Pleistocene island arc basalts, Zamboanga Peninsula, western Mindanao (Philippines). J Petrol 37:693–726

    Google Scholar 

  • Sajona FG, Maury RC, Prouteau G, Cotten J, Schiano P, Bellon H, Fontaine L (2000) Slab melt as metasomatic agent in island arc magma mantle sources, Negros and Batan (Philippines). Isl Arc 9:472–486

    Google Scholar 

  • Schellart WP, Freeman J, Stegman DR, Moresi L, May D (2007) Evolution and diversity of subduction zones controlled by slab width. Nature 446:308

    Google Scholar 

  • Schmidt MW, Poli S (1998) Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet Sci Lett 163:361–379

    Google Scholar 

  • Shibata T, Nakamura E (1997) Across-arc variations of isotope and trace element compositions from Quaternary basaltic rocks in northeastern Japan: implications for interaction between subducted oceanic slab and mantle wedge. J Geophys Res 102:8051–8064

    Google Scholar 

  • Shimoda G, Nohda S (1995) Lead isotope analyses: an application to GSJ standard rock samples. Human Environ Stud 4:29–36

    Google Scholar 

  • Shreve RL, Cloos M (1986) Dynamics of sediment subduction, melange formation, and prism accretion. J Geophys Res 91:10229–10245

    Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2009) Subduction styles in the Precambrian: insight from numerical experiments. Lithos. doi:10.1016/j.lithos.2009.05.028

    Google Scholar 

  • Smith IEM, Worthington TJ, Price RC, Gamble JA (1997) Primitive magmas in arc-type volcanic associations: examples from the southwest Pacific. Can Mineral 35:257–273

    Google Scholar 

  • Solomatov VS (2004) Initiation of subduction by small-scale convection. J Geophys Res 109, Article Number: B05408

    Google Scholar 

  • Stern RJ (2002) Subduction zones. Rev Geophys 40:3-1–3-38

    Google Scholar 

  • Stern RJ (2004) Subduction initiation: spontaneous and induced. Earth Planet Sci Lett 226:275–292

    Google Scholar 

  • Stern RJ, Bloomer SH (1992) Subduction zone infancy: examples from the Eocene Izu-Bonin-Mariana and Jurassic California arcs. Geol Soc Am Bull 104:1621–1636

    Google Scholar 

  • Stern RJ, Fouch MJ, Klemperer SL (2003) An overview of the Izu-Bonin-Mariana subduction factory. In: Eiler J (ed) Inside the subduction factory, vol 138, Geophys Monogr Ser. AGU, Washington, DC, pp 175–222

    Google Scholar 

  • Stolper E, Newman S (1994) The role of water in the petrogenesis of Mariana trough magmas, Earth Planet. Sci Lett 121:293–325

    Google Scholar 

  • Straub SM, Layne GD (2003) The systematic of chlorine, fluorine, and water in Izu arc front volcanic rocks: implications for volatile recycling in subduction zones. Geochim Cosmochim Acta 67:4179–4203

    Google Scholar 

  • Straub SM, LaGatta AB, Martin-DelPozzo AL, Langmuir CH (2008) Evidence from high-Ni olivines for a hybridized peridotite/pyroxenite source for orogenic andesites from the central Mexican Volcanic Belt. Geochem Geophys Geosyst 9, Article Number: Q03007

    Google Scholar 

  • Taira A, Saito S, Aoike K, Morita S, Tokuyama H, Suyehiro K, Takahashi N, Shinohara M, Kiyokawa S, Naka J, Klaus A (1998) Nature and growth rate of the Northern Izu-Bonin (Ogasawara) arc crust and their implications for continental crust formation. Isl Arc 7:395–407

    Google Scholar 

  • Takahashi N, Kodaira S, Klemperer SL, Tatsumi Y, Kaneda Y, Suyehiro K (2007) Crustal structure and evolution of the Mariana intra-oceanic island arc. Geology 35:203–206

    Google Scholar 

  • Takahashi N, Kodaira S, Tatsumi Y, Yamashita M, Sato T, Kaiho Y, Miura S, No T, Takizawa K, Kaneda Y (2009) Structural variations of arc crusts and rifted margins in the southern Izu-Ogasawara arc-back arc system. Geochem Geophys Geosyst 10, Article Number: Q09X08

    Google Scholar 

  • Tamura Y (1994) Genesis of island arc magmas by mantle derived bimodal magmatism: evidence from the Shirahama Group. Jpn: J Petrol 35:619–645

    Google Scholar 

  • Tamura Y, Tatsumi Y, Zhao DP, Kido Y, Shukuno H (2002) Hot fingers in the mantle wedge: new insights into magma genesis in subduction zones. Earth Planet Sci Lett 197:105–116

    Google Scholar 

  • Tatsumi Y, Eggins S (1995) Subduction-zone magmatism. Blackwell Science, Cambridge, MA, 211 pp

    Google Scholar 

  • Tatsumi Y, Hanyu T (2003) Geochemical modeling of dehydration and partial melting of subducting lithosphere: toward a comprehensive understanding of high-Mg andesite formation in the Setouchi volcanic belt, SW Japan. Geochem Geophys Geosyst 4, Article Number: 1081

    Google Scholar 

  • Tatsumi Y, Stern RJ (2006) Manufacturing continental crust in the subduction factory. Oceanography 19:104–112

    Google Scholar 

  • Tatsumi Y, Shukuno H, Tani K, Takahashi N, Kodaira S, Kogiso T (2008) Structure and growth of the Izu-Bonin-Mariana arc crust: 2. Role of crust-mantle transformation and the transparent Moho in arc crust evolution. J Geophys Res 113, Article Number: B02203

    Google Scholar 

  • Taylor B, Martinez F (2003) Back-arc basin basalt systematic. Earth Planet Sci Lett 210:481–497

    Google Scholar 

  • Toth J, Gurnis M (1998) Dynamics of subduction initiation at pre-existing fault zones. J Geophys Res 103:18053–18067

    Google Scholar 

  • Tsuchiya N, Suzuki S, Kimura J-I, Kagami H (2005) Evidence for slabmelt/mantle reaction: petrogenesis of Early Cretaceous and Eocene high-Mg andesites from the Kitakami Mountains, Japan. Lithos 79:179–206

    Google Scholar 

  • Turner S, Foden J (2001) U, Th and Ra disequilibria, Sr, Nd, and Pb isotope and trace element variations in Sunda arc lavas: predominance of a subducted sediment component. Contrib Mineral Petrol 142:43–57

    Google Scholar 

  • Turner S, Hawkesworth C (1997) Constraints on flux rates and mantle dynamics beneath island arcs from Tonga-Kermadec lava geochemistry. Nature 389:568–573

    Google Scholar 

  • Turner S, Hawkesworth CJ, Rogers N, Bartlett J, Worthington T, Hergt J, Pearce JA, Smith IME (1997) 238U-230Th disequilibria, magma petrogenesis, and flux rates beneath the depleted Tonga-Kermadec island arc. Geochim Cosmochim Acta 61:4855–4884

    Google Scholar 

  • Ueda K, Gerya T, Sobolev SV (2008) Subduction initiation by thermal–chemical plumes. Phys Earth Planet Inter 171:296–312

    Google Scholar 

  • Uyeda S, Ben-Avraham Z (1972) Origin and development of the Philippine Sea. Nature 240:176–178

    Google Scholar 

  • Van der Lee S, Regenauer-Lieb K, Yuen DA (2008) The role of water in connecting past and future episodes of subduction. Earth planet Sci Lett 273:15–27

    Google Scholar 

  • Van Keken PE, King SD (2005) Thermal structure and dynamics of subduction zones: insights from observations and modeling. Phys Earth Planet Inter 149:1–6

    Google Scholar 

  • van Keken PE, Kiefer B, Peacock SM (2002) High resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem Geophys Geosyst 3, Article Number: 1056

    Google Scholar 

  • Vlaar NJ, Wortel MJR (1976) Lithospheric aging, instability and subduction. Tectonophysics 32:331–351

    Google Scholar 

  • Wyss M, Hasegawa A, Nakajima J (2001) Source and path of magma for volcanoes in the subduction zone of northeastern Japan. Geophys Res Lett 28:1819–1822

    Google Scholar 

  • Yogodzinski GM, Volynets ON, Koloskov AV, Seliverstov NI, Matvenkov VV (1994) Magnesian andesites and the subduction component in a strongly calcalkaline series at the Piip volcano, far Western Aleutian. J Petrol 35:163–204

    Google Scholar 

  • Yogodzinski GM, Lees JM, Churikova TG, Dorendorf F, Woerner G, Volynets ON (2001) Geochemical evidence for the melting of subducting oceanic lithosphere at plate edges. Nature 409:500–504

    Google Scholar 

  • Zack T, Foley SF, Rivers T (2002) Equilibrium and disequilibrium trace element partitioning in hydrous eclogites (Trescolmen, central Alps). J Petrol 43:1947–1974

    Google Scholar 

  • Zandt G, Gilbert H, Owens TJ, Ducea M, Saleeby J, Jones CH (2004) Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature (Lond) 431:41–46

    Google Scholar 

  • Zhao DP (2001) Seismological structure of subduction zones and its implications for arc magmatism and dynamics. Phys Earth Planet Inter 127:197–214

    Google Scholar 

  • Zhao DP, Hasegawa A, Horiuchi S (1992) Tomographic imaging of P and S wave velocity structure beneath north-eastern Japan. J Geophys Res 97:19909–19928

    Google Scholar 

  • Zhao DP, Mishra OP, Sanda R (2002) Influence of fluids and magma on earthquakes: seismological evidence. Phys Earth Planet Inter 132:249–267

    Google Scholar 

  • Zhu G, Gerya TV, Yuen DA, Honda S, Yoshida T, Connolly JAD (2009) 3-D Dynamics of hydrous thermalchemical plumes in oceanic subduction zones. Geochem Geophys Geosyst 10, Article Number Q11006

    Google Scholar 

Download references

Acknowledgements

This work was supported by ETH Research Grants ETH-0807-2, ETH-0807-3, ETH-0609-2, SNF Research Grants 200020-126832, 200020-129487, SNF ProDoc program 4-D-Adamello and TopoEurope Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Gerya .

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gerya, T.V. (2011). Intra-oceanic Subduction Zones. In: Arc-Continent Collision. Frontiers in Earth Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88558-0_2

Download citation

Publish with us

Policies and ethics