Skip to main content

High Performance Computing and Discrete Dislocation Dynamics: Plasticity of Micrometer Sized Specimens

  • Conference paper
High Performance Computing in Science and Engineering '08

Summary

A parallel discrete dislocation dynamics tool is employed to study the size dependent plasticity of small metallic structures. The tool has been parallelised using OpenMP. An excellent overall scaling is observed for different loading scenarios.

The size dependency of the plastic flow is confirmed by the performed simulations for uniaxial loading and micro-bending tests. The microstructural origin of the size effect is analysed. A strong influence of the initial microstructure on the statistics of the deformation behaviour is observed, for both the uniaxial and bending scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N.A. Fleck; G.M. Muller; M.F. Ashby; J.W. Hutchinson. Strain gradient plasticity: Theory and experiment. Acta Metall. et Mater., 42:475–487, 1994.

    Article  Google Scholar 

  2. M.D. Uchic; D.M. Dimiduk; J.N. Florando; W.D. Nix. Samples dimensions influence strength and crystal plasticity. Science, 305:986–989, 2004.

    Article  Google Scholar 

  3. C.A. Volkert; E.T. Lilleodden. Size effects in the deformation of sub-micron au columns. Phil. Mag., 86(33-35):5567–5579, 2006.

    Article  Google Scholar 

  4. D. Kiener; W. Grosinger; G. Dehm; R. Pippan. A further step towards an understanding of size-dependent crystal plasticity: In situ tension experiments of miniaturized single-crystal copper samples. Acta Mater., 56:580–592, 2008.

    Article  Google Scholar 

  5. W.D. Nix; J.R. Greer; G. Feng; E.T. Lilleodden. Deformation at the nanometer and micrometer length scales: Effects of strain gradients and dislocation starvation. Thin Solid Films, 515:3152–3157, 2007.

    Article  Google Scholar 

  6. B. von Blanckenhagen; P. Gumbsch; E. Arzt. Dislocation sources and the flow stress of polycrystalline thin metal films. Phil. Mag. Lett., 83(1):1–8, 2003.

    Article  Google Scholar 

  7. B. von Blanckenhagen; E. Arzt; P. Gumbsch. Discrete dislocation simulation of plastic deformation in metal thin films. Acta Mater., 52:773–784, 2004.

    Article  Google Scholar 

  8. J.R. Greer; C.R. Weinberger; W. Cai. Comparing the strength of f.c.c. and b.c.c. sub-micrometer pillars: Compression experiments and dislocation dynamics simulations. Mat. Sci. Eng. A, doi:10.1016/j.msea.2007.08.093, 2008.

    Google Scholar 

  9. A.S. Budiman; S.M. Han; J.R. Greer; N. Tamura;  J.R. Patel;  W.D. Nix.  A search for evidence of strain gradient hardening in au submicron pillars under uniaxial compression using synchrotron x-ray microdiffraction. Acta Mater., 56:602–608, 2008.

    Article  Google Scholar 

  10. D.M. Dimiduk; M.D. Uchic; S.I. Rao; C. Woodward; T.A. Parthasarathy. Overview of experiments on microcrystal plasticity in fcc-derivative materials: selected challenges for modelling and simulation of plasticity. Mod. Sim. Mat. Sci. Eng., 15:135–146, 2007.

    Article  Google Scholar 

  11. T.A. Parthasarathy; S.I. Rao; D.M. Dimiduk; M.D. Uchic; D.R. Trinkle. Contribution to size effect of yield strength from the stochastics of dislocation source lengths in finite samples. Scripta Mater., 56:313–316, 2007.

    Article  Google Scholar 

  12. D.M. Dimiduk; M.D. Uchic; T.A. Parthasarathy. Size-affected single-slip behavior of pure nickel microcrystals. Acta Mater., 53:4065–4077, 2005.

    Article  Google Scholar 

  13. F.F. Csikor; C. Motz; D. Weygand; M. Zaiser; S. Zapperi. Dislocation avalanches, strain bursts, and the problem of plastic forming at the micrometer scale. Science, 318:251–254, 2007.

    Article  Google Scholar 

  14. D. Weygand; L.H. Friedman; E. van der Giessen; A. Needleman. Aspects of boundary-value problem solutions with three-dimensional dislocation dynamics. Mod. Sim. Mat. Sci. Eng., 10:437–468, 2002.

    Article  Google Scholar 

  15. H.D. Espinosa; M. Panico; S. Berbenni; K.W. Schwarz. Discrete dislocation dynamics simulations to interpret plasticity size and surface effects in freestanding fcc thin films. Int. J. Plast., 22:2091–2117, 2006.

    Article  MATH  Google Scholar 

  16. A. Arsenlis; W. Cai; M. Tang; M. Rhee; T. Oppelstrup; G. Hommes; T.G. Pierce; V.V. Bulatov. Enabling strain hardening simulations with dislocation dynamics. Mod. Sim. Mat. Sci. Eng., 15:553–595, 2007.

    Article  Google Scholar 

  17. J. Senger; D. Weygand; P. Gumbsch; O. Kraft. Discrete dislocation simulations of the plasticity of micro-pillars under uniaxial loading. Scripta Mater., 58:587–590, 2008.

    Article  Google Scholar 

  18. E. van der Giessen; A. Needleman. Discrete dislocation plasticity: a simple planar model. Mod. Sim. Mat. Sci. Eng., 3:689–735, 1995.

    Article  Google Scholar 

  19. J. Senger; D. Weygand; C. Motz; P. Gumbsch; O. Kraft. Uniform loading of micro-pillars with variable aspect ratio simulated with discrete dislocation dynamics. in preparation, 2008.

    Google Scholar 

  20. C. Motz; T. Schöberl; R. Pippan. Mechanical properties of micro-sized copper bending beams machined by the focused ion beam technique. Acta Mater., 53:4269–4279, 2005.

    Article  Google Scholar 

  21. C. Motz; D. Weygand; J. Senger; P. Gumbsch. Micro-bending tests: A comparison between three-dimensional discrete dislocation dynamics simulations and experiments. Acta Mater., 56:1942–1955, 2008.

    Article  Google Scholar 

  22. H. Gao; Y. Huang; W.D. Nix; J.W. Hutchinson. Jour. Mech. Phys. Sol., 47:1239, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  23. V.S. Deshpande; A. Needleman; E. van der Giessen. Dislocation dynamics is chaotic. Scripta Mater., 45:1047–1053, 2001.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Wolfgang E. Nagel Dietmar B. Kröner Michael M. Resch

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Weygand, D., Senger, J., Motz, C., Augustin, W., Heuveline, V., Gumbsch, P. (2009). High Performance Computing and Discrete Dislocation Dynamics: Plasticity of Micrometer Sized Specimens. In: Nagel, W.E., Kröner, D.B., Resch, M.M. (eds) High Performance Computing in Science and Engineering '08. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-88303-6_36

Download citation

Publish with us

Policies and ethics