Skip to main content

EEG Quality: Origin and Reduction of the EEG Cardiac-Related Artefact

  • Chapter
  • First Online:
EEG - fMRI

Abstract

With the advent of purpose-built “MR-compatible” EEG recording hardware, the simultaneous acquisition of EEG and fMRI has recently become more widespread (for reviews, see Herrmann and Debener 2007; Laufs et al. 2008). Nevertheless, the MRI scanner remains a hostile environment for EEG recordings, and ensuring good EEG signal quality can be a challenging task (e.g. Parkes et al. 2006). The level of EEG data quality that can be achieved from simultaneous recordings is a matter of ongoing investigation, but a common view is that a certain loss of quality is unavoidable and must be tolerated (Debener et al. 2007b). Nonetheless, combined EEG and fMRI data acquisitions in a single session are an attractive alternative to separate acquisitions in some circumstances, as discussed throughout this book (Babiloni et al. 2004; Debener et al. 2006; Horwitz and Poeppel 2002). The reduction of artefacts that contaminate the EEG signal as much as possible is necessary to make full use of the potential of EEG–fMRI. The MRI environment is known to introduce several different types of EEG artefact, among them the gradient artefact and the cardiac pulse-related (often referred to as ballistocardiogram or BCG) artefact. This chapter focuses on the pulse artefact: its origin, characteristics of it, and methods of reducing or eliminating it. After introducing the conceptual and statistical characteristics that define the pulse artefact, we discuss the mechanisms that give rise to the pulse artefact and present a two-factor pulse artefact model. We will review and compare different ways of removing it. We will focus on several recording and analysis details that have been barely acknowledged in the literature and can have a significant impact on the quality of the pulse artefact correction step, and thus on the final EEG data quality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this work we use the term “pulse-related artefact” or “pulse artefact” to designate what many authors call the BCG. This choice reflects the editors’ wish to use a term that can encompass all possible (not just ballistic) mechanisms that give rise to the EEG artefact (see Sect. 3).

  2. 2.

    The pulse artefact was originally described in clinical EEGs recorded outside the MRI and in the supine position, which can cause a pulsatile, rocking head rotation. Here we limit the pulse artefact to intra-MRI EEG recordings.

  3. 3.

    For a movie illustration of the BCG time course and topography, the interested reader may wish to visit http://www.debener.de.

  4. 4.

    These recordings were made at the Sir Peter Mansfield MRI Centre in Nottingham, UK. We are very grateful to Richard Bowtell and Karen Mullinger for sharing their ideas and our enthusiasm about EEG–fMRI and the pulse-related artefact.

References

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artefact and a method for its subtraction. Neuroimage 8(3):229–239

    Article  PubMed  CAS  Google Scholar 

  • Babiloni F, Mattia D, Babiloni C, Astolfi L, Salinari S, Basilisco A, Rossini PM, Marciani MG, Cincotti F (2004) Multimodal integration of EEG, MEG and fMRI data for the solution of the neuroimage puzzle. Magn Reson Imaging 22(10):1471–1476

    Article  PubMed  Google Scholar 

  • Benar CG, Aghakhani Y, Wang YH, Izenberg A, Al-Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG–fMRI for epilepsy. Clin Neurophysiol 114(3):569–580

    Article  PubMed  Google Scholar 

  • Bonmassar G, Purdon PL, Jaaskelainen IP, Chiappa K, Solo V, Brown EN, Belliveau JW (2002) Motion and ballistocardiogram artefact removal for interleaved recording of EEG and EPs during MRI. Neuroimage 16(4):1127–1141

    Article  PubMed  Google Scholar 

  • Briselli E, Garreffa G, Bianchi L, Bianciardi M, Macaluso E, Abbafati M, Grazia Marciani M, Maraviglia B (2006) An independent component analysis-based approach on ballistocardiogram artefact removing. Magn Reson Imaging 24(4):393–400

    Article  PubMed  Google Scholar 

  • Debener S, Makeig S, Delorme A, Engel AK (2005a) What is novel in the novelty oddball paradigm? Functional significance of the novelty P3 event-related potential as revealed by independent component analysis. Cogn Brain Res 22(3):309–321

    Article  Google Scholar 

  • Debener S, Mullinger KJ, Niazy RK, Bowtell RW (2008) Properties of the ballistocardiogram artefact as revealed by EEG recordings at 1.5, 3 and 7 T static magnetic field strength. Int J Psychophysiol 67(3):189–199

    Article  PubMed  Google Scholar 

  • Debener S, Strobel A, Sorger B, Peters J, Kranczioch C, Engel AK, Goebel R (2007) Improved quality of auditory event-related potentials recorded simultaneously with 3-T fMRI: Removal of the ballistocardiogram artefact. Neuroimage 34(2):590–600

    Article  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Engel AK (2006) Single-trial EEG/fMRI reveals the dynamics of cognitive function. Trends Cogn Sci 10(12):558–563

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005b) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25(50):11730–11737

    Article  PubMed  CAS  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21

    Article  PubMed  Google Scholar 

  • Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby Hand Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102(49):17798–17803

    Article  PubMed  CAS  Google Scholar 

  • Ellingson ML, Liebenthal E, Spanaki MV, Prieto TE, Binder JR, Ropella KM (2004) Ballisto­cardiogram artefact reduction in the simultaneous acquisition of auditory ERPS and fMRI. Neuroimage 22(4):1534–1542

    Article  PubMed  CAS  Google Scholar 

  • Goldman RI, Stern JM, Engel J, Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111(11):1974–1980

    Article  PubMed  CAS  Google Scholar 

  • Hamandi K, Laufs H, Nöth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. Neuroimage 39(2):608–618

    Article  PubMed  Google Scholar 

  • Handy TC (2005) Event-related potentials: a methods handbook. The MIT Press, Cambridge

    Google Scholar 

  • Herrmann CS, Debener S (2007) Simultaneous recording of EEG and BOLD responses: a historical perspective. Int J Psychophysiol 67(3):161–168

    Article  PubMed  Google Scholar 

  • Horwitz B, Poeppel D (2002) How can EEG/MEG and fMRI/PET data be combined? Hum Brain Mapp 17(1):1–3

    Article  PubMed  Google Scholar 

  • Huiskamp, G.J. (2005). Reduction of the Ballistocardiogram Artifact in Simultaneous EEG‑fMRI using ICA. Conf Proc IEEE Eng Med Biol Soc, 4, 3691–3694

    Google Scholar 

  • In, M.H., Lee, S.Y., Park, T.S., Kim, T.S., Cho, M.H., & Ahn, Y.B. (2006). Ballistocardiogram artifact removal from EEG signals using adaptive filtering of EOG signals. Physiological Measurement, 27, 1227–1240

    Google Scholar 

  • Kim KH, Yoon HW, Park HW (2004) Improved ballistocardiac artefact removal from the electroencephalogram recorded in fMRI. J Neurosci Methods 135(1–2):193–203

    Article  PubMed  Google Scholar 

  • Laufs H, Daunizeau J, Carmichael DW, Kleinschmidt A (2008) Recent advances in recording electrophysiological data simultaneously with magnetic resonance imaging. Neuroimage 40(2):515–528

    Article  PubMed  CAS  Google Scholar 

  • Mantini D, Perrucci MG, Cugini S, Ferretti A, Romani GL, Del Gratta C (2007) Complete artefact removal for EEG recorded during continuous fMRI using independent component analysis. Neuroimage 34(2):598–607

    Article  PubMed  CAS  Google Scholar 

  • Masterton, R.A., Abbott, D.F., Fleming, S.W., & Jackson, G.D. (2007). Measurement and reduction of motion and ballistocardiogram artefacts from simultaneous EEG and fMRI recordings. Neuroimage, 37, 202–211

    Google Scholar 

  • Nakamura W, Anami K, Mori T, Saitoh O, Cichocki A, Amari S (2006) Removal of ballistocardiogram artefacts from simultaneously recorded EEG and fMRI data using independent component analysis. IEEE Trans Biomed Eng 53(7):1294–1308

    Article  PubMed  Google Scholar 

  • Negishi M, Abildgaard M, Nixon T, Constable RT (2004) Removal of time-varying gradient artefacts from EEG data acquired during continuous fMRI. Clin Neurophysiol 115(9):2181–2192

    Article  PubMed  Google Scholar 

  • Niazy RK, Beckmann CF, Iannetti GD, Brady JM, Smith SM (2005) Removal of FMRI environment artefacts from EEG data using optimal basis sets. Neuroimage 28(3):720–737

    Article  PubMed  CAS  Google Scholar 

  • Parkes LM, Bastiaansen MC, Norris DG (2006) Combining EEG and fMRI to investigate the post-movement beta rebound. Neuroimage 29(3):685–696

    Article  PubMed  Google Scholar 

  • Sammer G, Blecker C, Gebhardt H, Kirsch P, Stark R, Vaitl D (2005) Acquisition of typical EEG waveforms during fMRI: SSVEP, LRP, and frontal theta. Neuroimage 24(4):1012–1024

    Article  PubMed  Google Scholar 

  • Sijbers J, Van Audekerke J, Verhoye M, Van der Linden A, Van Dyck D (2000) Reduction of ECG and gradient related artefacts in simultaneously recorded human EEG/MRI data. Magn Reson Imaging 18(7):881–886

    Article  Google Scholar 

  • Skrandies W (1990) Global field power and topographic similarity. Brain Topogr 3(1):137–141

    Article  PubMed  CAS  Google Scholar 

  • Srivastava G, Crottaz-Herbette S, Lau KM, Glover GH, Menon V (2005) ICA-based procedures for removing ballistocardiogram artefacts from EEG data acquired in the MRI scanner. Neuroimage 24(1):50–60

    Article  PubMed  CAS  Google Scholar 

  • Tenforde TS, Gaffey CT, Moyer BR, Budinger TF (1983) Cardiovascular alterations in Macaca monkeys exposed to stationary magnetic fields: experimental observations and theoretical analysis. Bioelectromagnetics 4(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Vincent JL, Larson-Prior LJ, Zempel JM, Snyder AZ (2007) Moving GLM ballistocardiogram artefact reduction for EEG acquired simultaneously with fMRI. Clin Neurophysiol 118(5):981–998

    Article  PubMed  Google Scholar 

  • Wan X, Iwata K, Riera J, Ozaki T, Kitamura M, Kawashima R (2006) Artefact reduction for EEG/fMRI recording: Nonlinear reduction of ballistocardiogram artefacts. Clin Neurophysiol 117(3):668–680

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Debener .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Debener, S., Kranczioch, C., Gutberlet, I. (2009). EEG Quality: Origin and Reduction of the EEG Cardiac-Related Artefact. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics