Skip to main content

Principles of Multimodal Functional Imaging and Data Integration

  • Chapter
  • First Online:
EEG - fMRI

Abstract

In a system as complex as the human brain, one cannot conceive of meaningful events involving a change in a single observable (physiological parameter). Therefore, achieving the ultimate aim of a complete understanding of brain events and brain activity in general will require the integration of a variety of observations related to these events. Multimodal imaging, or more generally measurements whereby data from various types of instruments are brought together, has arisen partly from this realisation, partly because some events are best observed in one modality and the investigator is interested in another (e.g. a more recently developed modality), and to be honest sometimes as a response to the technical challenge of combining modalities for simultaneous observations. Fundamentally, multimodal imaging should allow the investigator to address the question: what happens to brain observable Z when observable X changes (or event Y occurs)? In the second half of the twentieth century, and particularly since the 1990s, a rapid development of noninvasive functional and structural brain imaging methods has occurred. While some of these developments have resulted from gradual improvements in some methods, other developments have led to completely new approaches for measuring brain activity, affording new types of information about the brain. In the former case, the older methods were eventually replaced [e.g. scintigraphic methods by positron emission tomography (PET), and SPECT or low-field MRI (magnetic resonance imaging) by higher field MRI]. In the latter case, however, newer developments have not replaced older ones; rather, they have been added to an ever-larger orchestra of functional and structural neuroimaging methods consisting of techniques that offer complementary information about the brain. Table 1 gives an overview of currently available methods for noninvasive brain imaging and the principle that each exploits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12(2):230–9

    Article  CAS  PubMed  Google Scholar 

  • Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8(3):229–39

    Article  CAS  PubMed  Google Scholar 

  • Babiloni F, Babiloni C, Carducci F, Romani GL, Rossini PM, Angelone LM, Cincotti F (2003) Multimodal integration of high-resolution EEG and functional magnetic resonance imaging data: a simulation study. Neuroimage 19(1):1–15

    Article  CAS  PubMed  Google Scholar 

  • Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time course EPI of human brain function during task activation. Magn Reson Med 25(2):390–7

    Article  CAS  PubMed  Google Scholar 

  • Barrington SF, Koutroumanidis M, Agathonikou A, Marsden PK, Binnie CD, Polkey CE, Maisey MN, Panayiotopoulos CP (1998) Clinical value of “ictal” FDG-positron emission tomography and the routine use of simultaneous scalp EEG studies in patients with intractable partial epilepsies. Epilepsia 39(7):753–66

    Article  CAS  PubMed  Google Scholar 

  • Becker R, Ritter P, Moosmann M, Villringer A (2005) Visual evoked potentials recovered from fMRI scan periods. Hum Brain Mapp 26, 221–230

    Article  PubMed  Google Scholar 

  • Benar C, Aghakhani Y, Wang Y, Izenberg A, Al Asmi A, Dubeau F, Gotman J (2003) Quality of EEG in simultaneous EEG-fMRI for epilepsy. Clin Neurophysiol 114, 569–580

    Article  PubMed  Google Scholar 

  • Benar CG, Schon D, Grimault S, Nazarian B, Burle B, Roth M, Badier JM, Marquis P, Liegeois-Chauvel C, Anton JL (2007) Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI. Hum Brain Mapp 28, 602–613

    Article  PubMed  Google Scholar 

  • Beyer T, Townsend DW, Brun T, Kinahan PE, Charron M, Roddy R, Jerin J, Young J, Byars L, Nutt R (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41(8):1369–79

    CAS  PubMed  Google Scholar 

  • Bonmassar G, Anami K, Ives J, Belliveau JW (1999) Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI. Neuroreport 10(9):1893–7

    Article  CAS  PubMed  Google Scholar 

  • Bonmassar G, Schwartz DP, Liu AK, Kwong KK, Dale AM, Belliveau JW (2001) Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings. Neuroimage 13(6 Pt 1):1035–43

    Article  CAS  PubMed  Google Scholar 

  • Brandt SA, Davis TL, Obrig H, Meyer BU, Belliveau JW, Rosen BR, Villringer A (1996) Functional magnetic resonance imaging shows localized brain activation during serial transcranial stimulation in man. NeuroReport 7, 734–736

    Article  CAS  PubMed  Google Scholar 

  • Brookings T, Ortigue S, Grafton S, Carlson J (2009) Using ICA and realistic BOLD models to obtain joint EEG/fMRI solutions to the problem of source localization. NeuroImage 44, 411–420

    Article  PubMed  Google Scholar 

  • Buchheim K, Obrig H, v Pannwitz W, Müller A, Heekeren H, Villringer A, Meierkord H (2004) Decrease in haemoglobin oxygenation during absence seizures in adult humans. Neurosci Lett 354(2):119–22

    Article  CAS  PubMed  Google Scholar 

  • Buchner H, Fuchs M, Wischmann HA, Dössel O, Ludwig I, Knepper A, Berg P (1994) Source analysis of median nerve and finger stimulated somatosensory evoked potentials: multichannel simultaneous recording of electric and magnetic fields combined with 3D-MR tomography. Brain Topogr 6(4):299–310

    Article  CAS  PubMed  Google Scholar 

  • Busch E, Hoehn-Berlage M, Eis M, Gyngell ML, Hossmann KA (1995) Simultaneous recording of EEG, DC potential and diffusion-weighted NMR imaging during potassium induced cortical spreading depression in rats. NMR Biomed 8(2):59–64

    Article  CAS  PubMed  Google Scholar 

  • Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Jacobs RE, Cherry SR (2008) Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci USA 105(10):3705–10

    Article  CAS  PubMed  Google Scholar 

  • Carmichael DW, Hamandi K, Laufs H, Duncan JS, Thomas DL, Lemieux L (2008) An investigation of the relationship between BOLD and perfusion signal changes during epileptic generalised spike wave activity. Magn Reson Imaging 26, 870–873

    Article  PubMed  Google Scholar 

  • Daunizeau J, Grova C, Marrelec G, Mattout J, Jbabdi S, Pelegrini-Issac M, Lina JM, Benali H (2007) Symmetrical event-related EEG/fMRI information fusion in a variational Bayesian framework. NeuroImage 36, 69–87

    Article  PubMed  Google Scholar 

  • Debener S, Ullsperger M, Siegel M, Fiehler K, von Cramon DY, Engel AK (2005) Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J Neurosci 25(50):11730–7

    Article  CAS  PubMed  Google Scholar 

  • Eichele T, Specht K, Moosmann M, Jongsma ML, Quiroga RQ, Nordby H, Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102, 17798–17803

    Article  CAS  PubMed  Google Scholar 

  • Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. BMC Neurosci 4, 22

    Article  PubMed  Google Scholar 

  • Frahm J, Bruhn H, Merboldt KD, Hänicke W (1992) Dynamic MR imaging of human brain oxygenation during rest and photic stimulation. J Magn Reson Imaging 2(5):501–5

    Article  CAS  PubMed  Google Scholar 

  • Gamma A, Lehmann D, Frei E, Iwata K, Pascual-Marqui RD, Vollenweider FX (2004) Comparison of simultaneously recorded [H2 15O]-PET and LORETA during cognitive and pharmacological activation. Hum Brain Mapp 22(2):83–96

    Article  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2000) Acquiring simultaneous EEG and functional MRI. Clin Neurophysiol 111(11):1974–80

    Article  CAS  PubMed  Google Scholar 

  • Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13(18):2487–92

    Article  PubMed  Google Scholar 

  • Grimm Ch, Schreiber A, Kristeva-Feige R, Mergner Th, Hennig J, Lucking CH (1998) A comparison between electric source localisation and fMRI during somatosensory stimulation. Electroencephalogr-Clin-Neurophysiol 106, 22–29

    Article  CAS  PubMed  Google Scholar 

  • Hamandi K, Laufs H, Noth U, Carmichael DW, Duncan JS, Lemieux L (2008) BOLD and perfusion changes during epileptic generalised spike wave activity. NeuroImage 39, 608–618

    Article  PubMed  Google Scholar 

  • Heinze HJ, Mangun GR, Burchert W, Hinrichs H, Scholz M, Munte TF, Gos A, Scherg M, Johannes S, Hundeshagen H (1994) Combined spatial and temporal imaging of brain activity during visual selective attention in humans. Nature 372, 543–546

    Article  CAS  PubMed  Google Scholar 

  • Horovitz SG, Gore JC (2004) Simultaneous event-related potential and near-infrared spectroscopic studies of semantic processing. Hum Brain Mapp 22(2):110–5

    Article  PubMed  Google Scholar 

  • Hoshi Y, Mizukami S, Tamura M (1994) Dynamic features of hemodynamic and metabolic changes in the human brain during all-night sleep as revealed by near-infrared spectroscopy. Brain Res 652(2):257–62

    Article  CAS  PubMed  Google Scholar 

  • Ives JR, Warach S, Schmitt F, Edelman RR, Schomer DL (1993) Monitoring the patient’s EEG during echo planar MRI. Electroencephalogr Clin Neurophysiol 87:417–20

    Article  CAS  PubMed  Google Scholar 

  • Judenhofer MS, Wehrl HF, Newport DF, Catana C, Siegel SB, Becker M, Thielscher A, Kneilling M, Lichy MP, Eichner M, Klingel K, Reischl G, Widmaier S, Röcken M, Nutt RE, Machulla HJ, Uludag K, Cherry SR, Claussen CD, Pichler BJ (2008) Simultaneous PET-MRI: a new approach for functional and morphological imaging. Nat Med 14(4):459–65

    Article  CAS  PubMed  Google Scholar 

  • Kida I, Yamamoto T, Tamura M (1996) Interpretation of BOLD MRI signals in rat brain using simultaneously measured near-infrared spectrophotometric information. NMR Biomed 9(8): 333–8

    Article  CAS  PubMed  Google Scholar 

  • Kirkpatrick PJ, Lam J, Al-Rawi P, Smielewski P, Czosnyka M (1998) Defining thresholds for critical ischemia by using near-infrared spectroscopy in the adult brain. J Neurosurg 89(3):389–94

    Article  CAS  PubMed  Google Scholar 

  • Klaessens JH, Hopman JC, van Wijk MC, Djien Liem K, Thijssen JM (2005) Assessment of local changes of cerebral perfusion and blood concentration by near infrared spectroscopy and ultrasound contrast densitometry. Brain Dev 27(6):406–14

    Article  PubMed  Google Scholar 

  • Kleinschmidt A, Obrig H, Requardt M, Merboldt KD, Dirnagl U, Villringer A, Frahm J (1996) Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. J Cereb Blood Flow Metab 16(5):817–26

    Article  CAS  PubMed  Google Scholar 

  • Kohl M, Lindauer U, Dirnagl U, Villringer A (1998) Separation of changes in light scattering and chromophore concentrations during cortical spreading depression in rats. Opt Lett 23(7): 555–7

    Article  CAS  PubMed  Google Scholar 

  • Krakow K, Allen PJ, Symms MR, Lemieux L, Josephs O, Fish DR (2000) EEG recording during fMRI experiments: image quality. Hum Brain Mapp 10(1):10–5

    Article  CAS  PubMed  Google Scholar 

  • Krakow K, Lemieux L, Messina D, Scott CA, Symms MR, Duncan JS, Fish DR (2001a) Spatio-temporal imaging of focal interictal epileptiform activity using EEG-triggered functional MRI. Epileptic Disord 3(2):67–74

    CAS  PubMed  Google Scholar 

  • Krakow K, Messina D, Lemieux L, Duncan JS, Fish DR (2001b) Functional MRI activation of individual interictal epileptiform spikes. Neuroimage 13(3):502–5

    Article  CAS  PubMed  Google Scholar 

  • Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89(12):5675–9

    Article  CAS  PubMed  Google Scholar 

  • Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003) EEG-correlated fMRI of human alpha activity. NeuroImage 19, 1463–1476

    Article  CAS  PubMed  Google Scholar 

  • Lemieux L, Allen PJ, Franconi F, Symms MR, Fish DR (1997) Recording of EEG during fMRI experiments: patient safety. Magn Reson Med 38(6):943–52

    Article  CAS  PubMed  Google Scholar 

  • Lemieux L, Krakow K, Fish DR (2001a) Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization. Neuroimage 14(5):1097–104

    Article  CAS  PubMed  Google Scholar 

  • Lemieux L, Salek-Haddadi A, Josephs O, Allen P, Toms N, Scott C, Krakow K, Turner R, Fish DR (2001b) Event-related fMRI with simultaneous and continuous EEG: description of the method and initial case report. Neuroimage 14(3):780–7

    Article  CAS  PubMed  Google Scholar 

  • Liu AK, Belliveau JW, Dale AM (1998) Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalography data: Monte Carlo simulations. Proc-Natl-Acad-Sci-USA 95, 8945–8950

    Article  CAS  PubMed  Google Scholar 

  • Mackert BM, Leistner S, Sander T, Liebert A, Wabnitz H, Burghoff M, Trahms L, Macdonald R, Curio G (2008) Dynamics of cortical neurovascular coupling analyzed by simultaneous DC-magnetoencephalography and time-resolved near-infrared spectroscopy. Neuroimage 39(3):979–86

    Article  PubMed  Google Scholar 

  • Mackert BM, Wübbeler G, Leistner S, Uludag K, Obrig H, Villringer A, Trahms L, Curio G (2004) Neurovascular coupling analyzed non-invasively in the human brain. Neuroreport 15(1):63–6

    Article  PubMed  Google Scholar 

  • McDannold N, Moss M, Killiany R, Rosene DL, King RL, Jolesz FA, Hynynen K (2003) MRI-guided focused ultrasound surgery in the brain: tests in a primate model. Magn Reson Med 49(6):1188–91

    Article  PubMed  Google Scholar 

  • Mehagnoul-Schipper DJ, van der Kallen BF, Colier WN, van der Sluijs MC, van Erning LJ, Thijssen HO, Oeseburg B, Hoefnagels WH, Jansen RW (2002) Simultaneous measurements of cerebral oxygenation changes during brain activation by near-infrared spectroscopy and functional magnetic resonance imaging in healthy young and elderly subjects. Hum Brain Mapp 16(1):14–23

    Article  PubMed  Google Scholar 

  • Menon V, Ford JM, Lim KO, Glover GH, Pfefferbaum A (1997) Combined event-related fMRI and EEG evidence for temporal-parietal cortex activation during target detection. NeuroReport 8, 3029–3037

    Article  CAS  PubMed  Google Scholar 

  • Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. NeuroImage 20, 145–158

    Article  PubMed  Google Scholar 

  • Mulert C, Jäger L, Schmitt R, Bussfeld P, Pogarell O, Möller HJ, Juckel G, Hegerl U (2004) Integration of fMRI and simultaneous EEG: towards a comprehensive understanding of localization and time-course of brain activity in target detection. Neuroimage 22(1):83–94

    Article  PubMed  Google Scholar 

  • Mulert C, Seifert C, Leicht G, Kirsch V, Ertl M, Karch S, Moosmann M, Lutz J, Möller HJ, Hegerl U, Pogarell O, Jäger L (2008) Single-trial coupling of EEG and fMRI reveals the involvement of early anterior cingulate cortex activation in effortful decision making. Neuroimage 42(1):158–68

    Article  PubMed  Google Scholar 

  • Obrig H, Israel H, Kohl-Bareis M, Uludag K, Wenzel R, Müller B, Arnold G, Villringer A (2002) Habituation of the visually evoked potential and its vascular response: implications for neurovascular coupling in the healthy adult. Neuroimage 17(1):1–18

    Article  PubMed  Google Scholar 

  • Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–72

    Article  CAS  PubMed  Google Scholar 

  • Ogawa S, Tank DW, Menon R, Ellermann JM, Kim SG, Merkle H, Ugurbil K (1992) Intrinsic signal changes accompanying sensory stimulation: functional brain mapping with magnetic resonance imaging. Proc Natl Acad Sci USA 89(13):5951–5

    Article  CAS  PubMed  Google Scholar 

  • Portas CM, Krakow K, Allen P, Josephs O, Armony JL, Frith CD (2000) Auditory processing across the sleep-wake cycle: simultaneous EEG and fMRI monitoring in humans. Neuron 28(3):991–9

    Article  CAS  PubMed  Google Scholar 

  • Punwani S, Ordidge RJ, Cooper CE, Amess P, Clemence M (1998) MRI measurements of cerebral deoxyhaemoglobin concentration [dHb]—correlation with near infrared spectroscopy (NIRS). NMR Biomed 11(6):281–9

    Article  CAS  PubMed  Google Scholar 

  • Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex1. Hum Brain Mapp 30, 1168–1187

    Article  PubMed  Google Scholar 

  • Sabri O, Owega A, Schreckenberger M, Sturz L, Fimm B, Kunert P, Meyer PT, Sander D, Klingelhöfer J (2003) A truly simultaneous combination of functional transcranial Doppler sonography and H2 15O PET adds fundamental new information on differences in cognitive activation between schizophrenics and healthy control subjects. J Nucl Med 44(5):671–81

    PubMed  Google Scholar 

  • Sadato N, Nakamura S, Oohashi T, Nishina E, Fuwamoto Y, Waki A, Yonekura Y (1998) Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport 9(5):893–7

    Article  CAS  PubMed  Google Scholar 

  • Salustri C, Chapman RM (1989) A simple method for 3-dimensional localization of epileptic activity recorded by simultaneous EEG and MEG. Electroencephalogr Clin Neurophysiol 73(6):473–8

    Article  CAS  PubMed  Google Scholar 

  • Sheridan PH, Sato S, Foster N, Bruno G, Cox C, Fedio P, Chase TN (1988) Relation of EEG alpha background to parietal lobe function in Alzheimer’s disease as measured by positron emission tomography and psychometry. Neurology 38(5):747–50

    Article  CAS  PubMed  Google Scholar 

  • Siedenberg R, Goodin DS, Aminoff MJ, Rowley HA, Roberts TP (1996) Abstract comparison of late components in simultaneously recorded event-related electrical potentials and event-related magnetic fields. Electroencephalogr Clin Neurophysiol 99(2):191–4

    Article  CAS  PubMed  Google Scholar 

  • Stancak A, Polacek H, Vrana J, Rachmanova R, Hoechstetter K, Tintra J, Scherg M (2005) EEG source analysis and fMRI reveal two electrical sources in the fronto-parietal operculum during subepidermal finger stimulation. NeuroImage 25, 8–20

    Article  PubMed  Google Scholar 

  • Stefan H, Schneider S, Feistel H, Pawlik G, Schuler P, Abraham Fuchs K, Schlegel T, Neubauer U, Huk WJ (1992) Ictal and interictal activity in partial epilepsy recorded with multichannel magnetoelectroencephalography: correlation of electroencephalography/electrocorticography, magnetic resonance imaging, single photon emission computed tomography, and positron emission tomography findings. Epilepsia 33, 874–87

    Article  CAS  PubMed  Google Scholar 

  • Steinhoff BJ, Herrendorf G, Kurth C (1996) Ictal near infrared spectroscopy in temporal lobe epilepsy: a pilot study. Seizure 5(2):97–101

    CAS  PubMed  Google Scholar 

  • Strangman G, Culver JP, Thompson JH, Boas DA (2002) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17(2):719–31

    Article  PubMed  Google Scholar 

  • Terborg C, Birkner T, Schack B, Weiller C, Röther J (2003) Noninvasive monitoring of cerebral oxygenation during vasomotor reactivity tests by a new near-infrared spectroscopy device. Cerebrovasc Dis 16(1):36–41

    Article  CAS  PubMed  Google Scholar 

  • Toronov V, Webb A, Choi JH, Wolf M, Michalos A, Gratton E, Hueber D (2001) Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Med Phys 28(4):521–7

    Article  CAS  PubMed  Google Scholar 

  • Turner R, Le Bihan D, Moonen CT, Despres D, Frank J (1991) Echo-planar time course MRI of cat brain oxygenation changes. Magn Reson Med 22(1):159–66

    Article  CAS  PubMed  Google Scholar 

  • Villringer A, Dirnagl U (1995) Coupling of brain activity and cerebral blood flow: basis of functional neuroimaging. Cerebrovasc Brain Metab Rev 7(3):240–76

    CAS  PubMed  Google Scholar 

  • Villringer K, Minoshima S, Hock C, Obrig H, Ziegler S, Dirnagl U, Schwaiger M, Villringer A (1997) Comparison of near infrared spectroscopy and positron emission tomography in the assessment of frontal brain activation in humans. Adv Exp Med Biol 413:149–153

    CAS  PubMed  Google Scholar 

  • Warach S, Ives JR, Schlaug G, Patel MR, Darby DG, Thangaraj V, Edelman RR, Schomer DL (1996) EEG-triggered echo-planar functional MRI in epilepsy. Neurology 47(1):89–93

    Article  CAS  PubMed  Google Scholar 

  • Warach S, Levin JM, Schomer DL, Holman BL, Edelman RR (1994) Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. AJNR Am J Neuroradiol 15(5):965–8

    CAS  PubMed  Google Scholar 

  • Walter H, Kristeva R, Knorr U, Schlaug G, Huang Y, Steinmetz H, Nebeling B, Herzog H, Seitz RJ (1992) Individual somatotopy of primary sensorimotor cortex revealed by intermodal matching of MEG, PET, and MRI. Brain Topogr 5, 183–187

    Article  CAS  PubMed  Google Scholar 

  • Zotev VS, Matlashov AN, Volegov PL, Savukov IM, Espy MA, Mosher JC, Gomez JJ, Kraus RH Jr (2008) Microtesla MRI of the human brain combined with MEG. J Magn Reson 194:115–20

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arno Villringer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Villringer, A., Mulert, C., Lemieux, L. (2009). Principles of Multimodal Functional Imaging and Data Integration. In: Mulert, C., Lemieux, L. (eds) EEG - fMRI. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87919-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-87919-0_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-87918-3

  • Online ISBN: 978-3-540-87919-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics