Skip to main content

How to Evolve Cooperation

  • Chapter
  • First Online:
Games, Groups, and the Global Good

Part of the book series: Springer Series in Game Theory ((SSGT))

  • 1569 Accesses

Abstract

Cooperation is needed for evolution to construct new levels of organization. The emergence of genomes, cells, multi-cellular organisms, social insects, and human society are all based on cooperation. Cooperation means that selfish replicators forgo some of their reproductive potential to help one another. But natural selection implies competition between individuals and therefore opposes cooperation unless a specific mechanism is at work. Five mechanisms for the evolution of cooperation are discussed: kin selection, direct reciprocity, indirect reciprocity, network reciprocity, and group selection. I will argue that cooperation is essential for evolvability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abramson G, Kuperman M (2001) Social games in a social network. Phys Rev E 63:030901

    Google Scholar 

  • Alexander R (1987) The biology of moral systems. Aldine De Gruyter, New York

    Google Scholar 

  • Aumann R (1974) Subjectivity and correlation in randomized strategies. J Math Econ 1:67C96

    Google Scholar 

  • Aumann R (1987) Correlated equilibrium as an expression of Bayesian rationality. Econometrica 55:1C18

    Google Scholar 

  • Axelrod R (1984) The evolution of cooperation. Basic Books, New York

    Google Scholar 

  • Axelrod R, Hamilton WD (1981) The evolution of cooperation. Science 211:1390–1396

    Google Scholar 

  • Binmore K (1991) Fun and Games. Heath, Lexington, MA

    Google Scholar 

  • Bolton GE, Katok E, Ockenfels A (2005) Cooperation among strangers with limited information about reputation. J Public Econ 89:1457–1468

    Google Scholar 

  • Boyd R, Richerson PJ (2002) Group beneficial norms spread rapidly in a structured population. J Theor Biol 215:287–296

    Google Scholar 

  • Bowles S (2006) Group competition, reproductive leveling, and the evolution of human altruism. Science 314:1569–1572

    Google Scholar 

  • Brandt H, Sigmund K (2004) The logic of reprobation: assessment and action rules for indirect reciprocity. J Theor Biol 231:475–486

    Google Scholar 

  • Brandt H, Sigmund K (2005) Indirect reciprocity, image scoring, and moral hazard. PNAS 102:2666–2670

    Google Scholar 

  • Cavalli-Sforza LL, Feldman MW (1978) Darwinian selection and “altruism”. Theor Popul Biol 14(2):268–280

    Google Scholar 

  • Cressman R (2003) Evolutionary Dynamics and Extensive Form Games. MIT Press, Cambridge

    Google Scholar 

  • Crow JF, Aoki K (1982) Group selection for a polygenic behavioral trait: a different proliferation model. Proc Natl Acad Sci USA 79:2628–2631

    Google Scholar 

  • Dufwenberg M, Gneezy U, Güth W, van Damme E (2001) Direct vs indirect reciprocity: an experiment. Homo Oecon 18:19–30

    Google Scholar 

  • Durrett R, Levin S (1994) The importance of being discrete (and spatial). Theor Pop Biol 46:363–394

    Google Scholar 

  • Ebel H, Bornholdt S (2002) Coevolutionary games on networks. Phys Rev E 66:056118

    Google Scholar 

  • Engelmann D, Fischbacher U (2002) Indirect reciprocity and strategic reputation building in an experimental helping game. Univ Zürich working paper no. 132

    Google Scholar 

  • Fishman MA (2003) Indirect reciprocity among imperfect individuals. J Theor Biol 225:285–292

    Google Scholar 

  • Fishman MA, Lotem A, (2001) Stone L Heterogeneity stabilises reciprocal altruism interaction. J Theor Biol 209:87–95

    Google Scholar 

  • Fletcher JA, Zwick M (2004) Strong altruism can evolve in randomly formed groups. J Theor Biol 228:303–313

    Google Scholar 

  • Frank SA (1998) Foundations of Social Evolution. Princeton University Press, Princeton

    Google Scholar 

  • Fudenberg D, Maskin E (1986) Folk Theorem for repeated games with discounting or with incomplete information. Econometrica 54:533–554

    Google Scholar 

  • Fudenberg D, Maskin E (1990) Evolution and Cooperation in Noisy Repeated Games. Am Econ Rev 80:274–279

    Google Scholar 

  • Fudenberg D, Tirole J (1991) Game Theory. MIT Press, Cambridge

    Google Scholar 

  • Gintis H (2000) Game Theory Evolving. Princeton University Press, Princeton

    Google Scholar 

  • Goodnight CJ (1990a) Experimental studies of community evolution. I. The response to selection at the community level. Evolution 44(6):1614–1624

    Google Scholar 

  • Goodnight CJ (1990b) Experimental studies of community evolution. II. The ecological basis of the response to community selection. Evolution 44(6):1625–1636

    Google Scholar 

  • Goodnight CJ, Stevens L (1997) Experimental Studies of Group selection: what do they tell us about group selection in nature. Am Nat 150:S59–S79

    Google Scholar 

  • Grafen A (1979) The hawk-dove game played between relatives. Anim Behav 27:905–907

    Google Scholar 

  • Grafen A (1985) A geometric view of relatedness. Oxford Surveys Evol Biol 2:28–89

    Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. J Theor Biol 7:1–16

    Google Scholar 

  • Hamilton WD (1996) Narrow Roads of Gene Land: I Evolution of Social Behaviour W.H. Freeman, Oxford

    Google Scholar 

  • Harpending H, Rogers A (1987) On Wright’s mechanism for intergroup selection. J Theor Biol 127:51–61

    Google Scholar 

  • Harvey PH, Partridge L, Nunney L (1985) Group selection and the sex ratio. Nature 313:10–11

    Google Scholar 

  • Hassell MP, Comins HN, May RM (1994) Species coexistence and self-organizing spatial dynamics. Nature 370:290–292

    Google Scholar 

  • Hauert C, Doebeli M (2004) Spatial structure often inhibits the evolution of cooperation in the Snowdrift game. Nature 428:643–646

    Google Scholar 

  • Herz AVM (1994) Collective phenomena in spatially extended evolutionary games. J Theor Biol 169:65–87

    Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Hofbauer J, Sigmund K (2003) Evolutionary Game Dynamics. Bull Am Math Soc 40:479–519

    Google Scholar 

  • Hofbauer J, Schuster P, Sigmund K (1979) A note on evolutionary stable strategies and game dynamics. J Theor Biol 81:609–612

    Google Scholar 

  • Imhof LA, Fudenberg D, Nowak MA (2005) Evolutionary cycles of cooperation and defection. P Natl Acad Sci USA 102:10797–10800

    Google Scholar 

  • Kerr B, Godfrey-Smith P (2002) Individualist and multi-level perspectives on selection in structured populations. Biol Philos 17:477–517

    Google Scholar 

  • Killingback T, Bieri J, Flatt T (2006) Evolution in group-structured populations can resolve the tragedy of the commons. Proc R Soc B 273:1477–1481

    Google Scholar 

  • Kraines D, Kraines V (1989) Pavlov and the prisoner’s dilemma. Theory and Decision 26:47–49

    Google Scholar 

  • Leigh EG (1983) When does the good of the group override the advantage of the individual? Proc Natl Acad Sci USA 80:2985–2989

    Google Scholar 

  • Lieberman E, Hauert C, Nowak MA (2005) Evolutionary dynamics on graphs. Nature 433:312–316

    Google Scholar 

  • Lotem A, Fishman MA, Stone L (1999) Evolution of cooperation between individuals. Nature 400:226–227

    Google Scholar 

  • May RM (1987) More evolution of cooperation. Nature 327:15–17

    Google Scholar 

  • May RM (2006) Network structure and the biology of populations. Trends in Ecol & Evol 21:394–399

    Google Scholar 

  • Maynard Smith J (1964) Group selection and kin selection. Nature 200:1145–1147

    Google Scholar 

  • Maynard Smith J (1976) Group selection. Quart Rev Biol 51:277–283

    Google Scholar 

  • Maynard Smith J (1982) Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK

    Google Scholar 

  • Maynard Smith J, Price GR (1973) The logic of animal conflict. Nature 264:15–18

    Google Scholar 

  • Michod RE (1999) Darwinian dynamics. Princeton University Press, Princeton

    Google Scholar 

  • Milinski M (1984) A predator’s costs of overcoming the confusion-effect of swarming prey. Animal Behav 32:1157–1162

    Google Scholar 

  • Milinski M, Semmann D, Krambeck H-J (2002) Reputation helps solve the ‘tragedy of the commons.’ Nature 415:424–426

    Google Scholar 

  • Milinski M, Semmann D, Krambeck H-J, Marotzke J (2006) Stabilizing the Earth’s climate is not a losing game: supporting evidence from public goods experiments. PNAS 103:3994–3998

    Google Scholar 

  • Molander P (1985) The optimal level of generosity in a selfish, uncertain environment. J Conflict Resolut 29:611–618

    Google Scholar 

  • Nakamaru M, Matsuda H, Iwasa Y (1997) The evolution of cooperation in a lattice-structure population. J Theor Biol 184:65–81

    Google Scholar 

  • Nakamaru M, Nogami H, Iwasa Y (1998) Score-dependent fertility model for the evolution of cooperation in a lattice. J Theor Biol 194:101–124

    Google Scholar 

  • Nowak MA (2006a) Evolutionary dynamics. Harvard University Press, Cambridge

    Google Scholar 

  • Nowak MA (2006b) Five rules for the evolution of cooperation. Science 314:1560–1563

    Google Scholar 

  • Nowak MA, May RM (1992) Evolutionary games and spatial chaos. Nature 359:826–829

    Google Scholar 

  • Nowak MA, Sasaki A, Taylor C, Fudenberg D (2004) Emergence of cooperation and evolutionary stability in finite populations. Nature 428:646–650

    Google Scholar 

  • Nowak MA, Sigmund K (1990) The evolution of stochastic strategies in the prisoner’s dilemma. Acta Appl Math 20:247–265

    Google Scholar 

  • Nowak MA, Sigmund K (1992) Tit for tat in heterogenous populations. Nature 355:250–253

    Google Scholar 

  • Nowak MA, Sigmund K (1993) A strategy of win-stay, lose-shift that outperforms tit for tat in prisoner’s dilemma. Nature 364:56–58

    Google Scholar 

  • Nowak MA, Sigmund K (1994) The alternating prisoner’s dilemma. J Theor Biol 168:219–226

    Google Scholar 

  • Nowak MA, Sigmund K (1998a) Evolution of indirect reciprocity by image scoring. Nature 393:573-577

    Google Scholar 

  • Nowak MA, Sigmund K (1998b) The dynamics of indirect reciprocity. J Theor Biol 194:561–574

    Google Scholar 

  • Nowak MA, Sigmund K (2004) Evolutionary dynamics of biological games. Science 303:793–799

    Google Scholar 

  • Nowak MA, Sigmund K (2005) Evolution of indirect reciprocity. Nature 437:1291–1298

    Google Scholar 

  • Nunney L (1985) Group selection, altruism, and structure-deme models. Am Nat 126:212–230

    Google Scholar 

  • Ohtsuki H, Iwasa Y (2004) How should we define goodness? Reputation dynamics in indirect reciprocity. J Theor Biol 231:107–120

    Google Scholar 

  • Ohtsuki H, Iwasa Y (2006) The leading eight: social norms that can maintain cooperation by indirect reciprocity. J Theor Biol 239:435–444

    Google Scholar 

  • Ohtsuki H, Iwasa Y (2007) Global analyses of evolutionary dynamics and exhaustive search for social norms that maintain cooperation by reputation. J Theor Biol 244:518–531

    Google Scholar 

  • Ohtsuki H, Nowak MA (2006a) The replicator equation on graphs. J Theor Biol 243:86–97

    Google Scholar 

  • Ohtsuki H, Nowak MA (2006b) Evolutionary games on cycles. Proc R Soc B 273:2249–2256

    Google Scholar 

  • Ohtsuki H, Hauert C, Lieberman E, Nowak MA (2006) A simple rule for the evolution of cooperation on graphs and social networks. Nature 441:502–505

    Google Scholar 

  • Ohtsuki H, Pacheco J, Nowak MA (2007) Evolutionary graph theory: breaking the symmetry between interaction and replacement. J Theor Biol 246:681–694

    Google Scholar 

  • Panchanathan K, Boyd R (2004) Indirect reciprocity can stabilize cooperation without the second-order free rider problem. Nature 432:499–502

    Google Scholar 

  • Paulsson J (2002) Multileveled selection on plasmid replication. Genetics 161:1373–1384

    Google Scholar 

  • Queller DC (1985) Kinship, reciprocity and synergism in the evolution of social behaviour. Nature 318:366–367

    Google Scholar 

  • Queller DC (1992) A general model for kin selection. Evolution 46:376–380

    Google Scholar 

  • Rand DA, Wilson HB (1995) Using spatio-temporal chaos and intermediate-scale determinism to quantify spatially extended ecosystems. Proc Biol Sci 259:111–117

    Google Scholar 

  • Rapoport A, Chammah AM (1965) Prisoner’s dilemma: a study in conflict and cooperation. University of Michigan Press, Ann Arbor

    Google Scholar 

  • Rockenbach B, Milinski M (2006) The efficient interaction of indirect reciprocity and costly punishment. Nature 444:718–723

    Google Scholar 

  • Rousset F (2004) Genetic structure and selection in subdivided populations. Princeton University Press, Princeton

    Google Scholar 

  • Rousset F, Billiard S (2000) A theoretical basis for measures of kin selection in subdivided populations: finite populations and localized dispersal. J Evol Biol 13:814–825

    Google Scholar 

  • Samuelson L (1997) Evolutionary games and equilibrium selection. MIT, Cambridge

    Google Scholar 

  • Santos FC, Pacheco JM (2005) Scale-free networks provide a unifying framework for the emergence of cooperation. Phys Rev Lett 95:098104

    Google Scholar 

  • Santos FC, Pacheco JM, Lenaerts T (2006) Cooperation prevails when indviduals adjust their social ties. PLoS Comput Biol 2:1284–1291

    Google Scholar 

  • Skyrms B, Pemantle R (2000) A dynamic model of social network formation. Proc Natl Acad Sci USA 97:9340–9346

    Google Scholar 

  • Slatkin M, Wade MJ (1978) Group selection on a quantitative character. Proc Natl Acad Sci USA 75:3531–3534

    Google Scholar 

  • Szabó G, Vukov J, Szolnoki A (2005) Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys Rev E 72:047107

    Google Scholar 

  • Szathmáry E, Demeter L (1987) Group selection of early replictors and the origin of life. J Theor Biol 128:463–486

    Google Scholar 

  • Takahashi N, Mashima R (2003) The emergence of indirect reciprocity: is the standing strategy the answer? Center for the study of cultural and ecological foundations of the mind, Hokkaido University, Japan, Working paper series No. 29

    Google Scholar 

  • Taylor PD (1996) Inclusive fitness arguments in genetic models of behaviour. J Math Biol 34:654–674

    Google Scholar 

  • Taylor PD, Frank S (1996) How to make a kin selection model. J Theor Biol 180:27–37

    Google Scholar 

  • Taylor PD, Jonker LB (1978) Evolutionarily stable strategies and game dynamics. Math Bio Sci 40:145–156

    Google Scholar 

  • Taylor PD, Wild G, Gardner A (2007) Direct fitness or inclusive fitness: how should we model kin selection. J Evol Biol 20:296–304

    Google Scholar 

  • Traulsen A, Nowak MA (2006) Evolution of cooperation by multilevel selection. PNAS 103:10952–10955

    Google Scholar 

  • Traulsen A, Sengupta AM, Nowak MA (2005) Stochastic evolutionary dynamics on two levels. J Theor Biol 235:393–401

    Google Scholar 

  • Trivers R (1971) The evolution of reciprocal altruism. Q Rev Biol 46:35–37

    Google Scholar 

  • Trivers R (1985) Social evolution. Benjamin/Cummings, Menlo Park

    Google Scholar 

  • Uyenoyama MK, Feldman MW (1980) Theories of kin and group selection: a population genetic perspective. Theor Pop Biol 17:380–414

    Google Scholar 

  • Vukov J, Szabó G (2005) Evolutionary prisoner’s dilemma game on hierarchical lattices. Phys Rev E 71:036133

    Google Scholar 

  • Vukov J, Szabó G, Szolnoki A (2006) Evolutionary prisoner’s dilemma game on hierarchical lattices. Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys Rev E 74:067103

    Google Scholar 

  • Wade MJ (1977) An experimental study of group selection. Evolution 31:134–153

    Google Scholar 

  • Wade MJ (1978) A critical review of the models of group selection. Qrt Rev Biol 53:101–114

    Google Scholar 

  • Wedekind C, Braithwaite VA (2002) The long-term benefits of human generosity in indirect reciprocity. Curr Biol 12:1012–1015

    Google Scholar 

  • Wedekind C, Milinski M (2000) Cooperation through image scoring in humans. Science 288:850–852

    Google Scholar 

  • Weibull J (1995) Evolutionary game theory. MIT, Cambridge

    Google Scholar 

  • Williams GC (1966) Adaption and natural selection: a critique of some current evolutionary thought. Princeton University Press, Princeton

    Google Scholar 

  • Wilson DS (1975) A theory of group selection. Proc Nat Acad Sci USA 72:143–146

    Google Scholar 

  • Wilson DS (1983) The group selection controversy and current status. Annu Rev Ecol Syst 14:159–187

    Google Scholar 

  • Wilson EO, Hölldobler B (2005) Eusociality: origin and consequences. Proc Natl Acad Sci USA 102:13367–13371

    Google Scholar 

  • Wu Z, Xu X, Huang Z, Wang S, Wang Y (2006) Evolutionary prisoner’s dilemma game with dynamic preferential selection. Phys Rev E 74:021107

    Google Scholar 

  • Wynne-Edwards VC (1962) Animal dispersion in relation to social behavior. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Zeeman EC (1980) Population dynamics from game theory. In: Nitecki A, Robinson C (eds) Proceedings of an International Conference on Global Theory of Dynamics Systems. Lecture Notes in Mathematics 819. Springer, Berlin

    Google Scholar 

Download references

Acknowledgements

Support from the John Templeton foundation and the NSF/NIH joint program in mathematical biology (NIH grant R01GM078986) is gratefully acknowledged. The Program for Evolutionary Dynamics at Harvard University is sponsored by Jeffrey Epstein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Taylor .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Taylor, C., Nowak, M.A. (2009). How to Evolve Cooperation. In: Levin, S. (eds) Games, Groups, and the Global Good. Springer Series in Game Theory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85436-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85436-4_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85435-7

  • Online ISBN: 978-3-540-85436-4

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics