Skip to main content

Recent Glacier Changes in the Mongolian Altai Mountains: Case Studies from Munkh Khairkhan and Tavan Bogd

  • Chapter
  • First Online:
Global Land Ice Measurements from Space

Abstract

The glaciers of the Mongolian Altai mountains play a vital role in the regional ecosystem and have created a unique physical landscape; however, there are limited data regarding the current state of the glaciers, the physical landscape, the climate, and the responses of glaciers to climate change in this region. The purpose of this study was to map recent glacier changes in the Munkh Khairkhan and Tavan Bogd ranges, to evaluate the methodologies and classifications employed, and to develop an understanding of how climate change influences glaciers and geomorphology within the region. Through the use of multitemporal ASTER and Landsat imagery and geomorphometric analysis of digital elevation models (DEMs), it was possible to monitor the glaciers and landscape dynamics. Supporting fieldwork in the Munkh Khairkhan range was conducted in the summer of 2009. The results from our analyses indicate that in the Munkh Khairkhan range there has been a decrease in glacier area of ~30 % and an increase in equilibrium line altitude (ELA) by ~22 m between 1990 and 2006; in the Tavan Bogd range, home of the highest altitudes in Mongolia, glacier extents decreased by 4.2 % between 1989 and 2009. This decrease in glacier area will impact landscape development, meltwater contribution to regional hydrology, and the people who depend on these glaciers to maintain their nomadic way of life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baast, P. (1999) ‘‘Catalog of Mongolian Glaciers.’’ Unpublished report of the Institute of Meteorology and Hydrology of Mongolia, Ulaanbaatar, 162 pp.

    Google Scholar 

  • Bader, N.E., Carson, R.J., Wegmann, K.W., Frankel, K.L., Bayasgalan, A., Dundon, K.M., Ladig, K.L., Leary, R.J., Matzinger, G.R., and Seymour, A.M. (2008) Late Quaternary glacier retreat in the Mongolian Altai. Paper presented at American Geophysical Union Fall Meeting 2008 (Abstract #H51D-0828).

    Google Scholar 

  • Bamber J. (2006) Remote sensing in glaciology. In: P.G. Knight (Ed.), Glacier Science and Environmental Change, Blackwell, Malden, MA, pp. 370-382.

    Google Scholar 

  • Bane, M.E. (2009) Glacier monitoring in Ladakh and Zanskar, northwestern India. Master’s thesis, University of Montana, 132 pp.

    Google Scholar 

  • Batima, P., Natsagdorj, L., Gombluudev, P. and Erdenetsetseg, B. (2005) Observed Climate Change in Mongolia (AIACC Working Paper No. 12), Assessments of Impacts and Adaptations of Climate Change, United Nations, New York, pp. 1-26.

    Google Scholar 

  • Beniston, M. (2000) Environmental Change in Mountains and Uplands, Arnold, London, 172 pp.

    Google Scholar 

  • Benn, D.I. and Lehmkuhl, F. (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International, 65/66, 15-29.

    Google Scholar 

  • Bishop, M.P. and Shroder, J.F., Jr. (2004) Geographic Information Science and Mountain Geomorphology, Springer/Praxis, Heidelberg, Germany/Chichester, U.K., 486 pp.

    Google Scholar 

  • Bishop, M.P., Shroder, J.F., Jr., and Colby, J.D. (2003) Remote sensing and geomorphometry for studying relief production in high mountains. Geomorphology, 55, 345-361.

    Google Scholar 

  • Bolch, T. (2005) Glacier Retreat and Climate Change in Northern Tien Shan (Kazakhstan/Kyrgyzstan) Visualized and Analyzed by DEMs, Landsat and ASTER Data (Geophysical Research Abstract Vol. 7, 09200), European Geosciences Union, Munich, Germany.

    Google Scholar 

  • Bolch, T., and Kamp, U. (2006) Glacier mapping in high mountains using DEMs, Landsat and ASTER data. Grazer Schriften der Geographie und Raumforschung, 41, 37-48.

    Google Scholar 

  • Bolch, T., Buchroithner, M.F., Peters, J., Baessler, M., and Bajracharya, S. (2008) Identification of glacier motion and potentially dangerous glacial lakes in the Mt. Everest region/Nepal using spaceborne imagery. Natural Hazards and Earth System Sciences, 8, 13291340.

    Google Scholar 

  • CGIAR-CSI (2008) SRTM 90 m Digital Elevation Data. Available at http://srtm.csi.cgiar.org/ [accessed June 27, 2011] [Consultative Group of International Agricultural Research-Consortium for Special Information].

  • Crippen, R.E. (1988) The dangers of understanding the importance of data adjustments in band ratioing. International Journal of Remote Sensing, 9(4), 767-776.

    Google Scholar 

  • Davaa, G., Oyunbaatar, D., and Sugita, M. (2007) Surface water of Mongolia. In: Y. Konagaya (Ed.), A Handbook of Mongolian Environments, Kenbunsha, Kyoto, Japan, pp. 55-68.

    Google Scholar 

  • Davi, N.K., Jacoby, G.C., D’Arrigo, R.D., Baatarbileg, N., Jinbao, L., and Curtis, A.E. (2009) A tree-ring- based drought index reconstruction for far-western Mongolia: 1565-2004. International Journal of Climatology, 29, 1508-1514.

    Google Scholar 

  • Enkhtaivan, D. (2006) Physical-geographical characteristics of the Altai region. In: H. Vogtmann and N. Dobrestov (Eds.), Environmental Security and Sustainable Land Use: With Special Reference to Central Asia, Springer-Verlag, Dordrecht, The Netherlands, pp. 349-351.

    Google Scholar 

  • GISLab (2003) GPS Guide. Available at http://gislab.lanl.gov/gps_guide.html[accessed June 27, 2011] [Los Alamos National Laboratory].

  • Gong, D.Y. and Ho, C.H. (2002) The Siberian High and climate change over middle to high latitude Asia. Theoretical and Applied Climatology, 72, 1-9.

    Google Scholar 

  • Hall, D.K., Ormsby, J.P., Bindschadler, R.A., and Siddalingaiah, H. (1987) Characterization of snow and ice reflectance zones on glaciers using Landsat Thematic Mapper data. Annals of Glaciology, 9, 104-108.

    Google Scholar 

  • Jacoby, G.J., D’Arrigo, R.D., and Davaajamts, T. (1996) Mongolian tree rings and 20th-century warming. Science, 273, 771-773.

    Google Scholar 

  • Jacoby, G.J., D’Arrigo, R.D., Pederson, N., Buckley, B., Dugarjav, C., and Mijidorj, R. (1999) Temperature and precipitation in Mongolia based on dendroclimatic investigations. IAWA Journal, 20, 339-350 [International Association of Wood Anatomists].

    Google Scholar 

  • Jansen, A. (2010) Modeling of climate parameters for characterizing glaciers in the Turgen-Kharkhiraa Massif (Mongolia). Ph.D. thesis, Technical University of Aachen, 143 pp. + Appendix [in German].

    Google Scholar 

  • Jóhannesson, T., Raymond, C., and Waddington, E. (1989) Time-scale for adjustment of glaciers to changes in mass balance. Journal of Glaciology, 35(121), 355369.

    Google Scholar 

  • Kääb, A., Huggel, C., Paul, F., Wessels, R., Raup, B., Kieffer, H., and Kargel, J. (2003) Glacier monitoring from ASTER imagery: Accuracy and applications. EARSeL eProceedings, 2, 43-53.

    Google Scholar 

  • Kadota, T., and Davaa, G. (2007) Recent glacier variations in Mongolia. Annals of Glaciology, 46, 185-188.

    Google Scholar 

  • Kadota, T., Gombo, D., Kalsan, P., Namgur, D., and Ohata, T. (2011) Glaciological research in the Mongolian Altai, 2003-2009. Bulletin of Glaciological Research, 28, 41-50.

    Google Scholar 

  • Kamp, U., Bolch, T., and Olsenholler, J. (2003) DEM generation from ASTER satellite data for geomorpho- metric analysis of Cerro Sillajhuay, Chile/Bolivia. Paper presented at ASPRS 2003 Annual Conference Proceedings, Anchorage, Alaska, CD-ROM, 9 pp.

    Google Scholar 

  • Kamp, U., Byrne, M., and Bolch, T. (2011) Glacier fluctuations between 1975 and 2008 in the Greater Himalaya Range of Zanskar, southern Ladakh. Journal of Mountain Science, 8, 374-389.

    Google Scholar 

  • Kamp, U., McManigal, K., Dashtseren, A., and Walther, M. (2013) Documenting glacier changes between 1910, 1970, 1992 and 2010 in the Turgen Mountains, Mongolian Altai, using repeated photographs, topographic maps and satellite imagery. Geographical Journal, 179, 248-263.

    Google Scholar 

  • Krgel, J.S., Abrams, M.J., Bishop, M.P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H.H., Lee, E.M., Paul, F. et al. (2005) Multispectral imaging contributions to Global Land Ice Measurements from Space. Remote Sensing of Environment, 99, 187-219.

    Google Scholar 

  • Khrutsky, V.S., and Golubeva, E.I. (2008) Dynamics of the glaciers of the Turgen-Kharkhira mountain range (western Mongolia). Geography and Natural Resources, 29, 278-287.

    Google Scholar 

  • Klein, A.G., and Isacks, B.L. (1998) Alpine glacial geo- morphological studies in the Central Andes using Landsat Thematic Mapper images. Glacial Geology and Geomorphology, rp01. Available at: http://jjportal.ucm.esjcjdocument_libraryjget_file?uuid=64a9b2a8-6a93-4d04-a7b6-a895eabaafd2&groupid=169528

    Google Scholar 

  • Klinge, M. (2001) Glacial-geomorphologic Investigations in the Mongolian Altai: A Contribution to the Late Quaternary Landscape and Climate History of Western Mongolia (Aachener Geographische Arbeiten No. 35), Geographisches Institut der RWTH Aachen, Aachen, Germany, 125 pp. [in German with English summary].

    Google Scholar 

  • Konya, K., Kadota, T., Davaa, G., Yakubi, H., and Ohata, T. (2010) Meteorological and ablation features of Potanin Glacier, Mongolian Altai. Bulletin of Glaciological Research, 28, 7-16.

    Google Scholar 

  • Kumler, M.P. (1994) An intensive comparison of triangulated irregular networks (TINs) and digital elevation models (DEMs). Cartographica, 31, 1-99.

    Google Scholar 

  • Lehmkuhl, F., Klinge, M., and Stauch, G. (2004) The extent of Late Pleistocene glaciations in the Altai and Khangai Mountains. In: J. Ehlers and P.L. Gibbard (Eds.), Quaternary Glaciations—Extent and Chronology, Part III: South America, Asia, Africa, Australasia, Antarctica (Developments in Quaternary Science, Vol. 2), Elsevier, Amsterdam, The Netherlands, pp. 243-254.

    Google Scholar 

  • Lehmkuhl, F., Klinge, M., and Stauch, G. (2011) The extent and timing of Late Pleistocene glaciations in the Altai and neighbouring mountain systems. Chapter 69 in: J. Ehlers, P.L.Gibbard, and P.D. Hughes (Eds.), Quaternary Glaciations—Extent and Chronology: A Closer Look (Developments in Quaternary Science, Vol. 15), Elsevier, Amsterdam, The Netherlands, pp. 967-979.

    Google Scholar 

  • Mark, R. (1992) Multidirectional, Oblique-weighted, Shaded-relief Image of the Island of Hawaii (USGS Open-File Report 92-422), U.S. Geological Survey, Reston, VA, 5 pp.

    Google Scholar 

  • MASPL (2009) Mönkhkhairkan Temperature and Precipitation Record 1997-2008. Mongolian Academy of Science Permafrost Laboratory, Ulaanbaatar, Mongolia [in Mongolian].

    Google Scholar 

  • Muller, J.P. (2008) Trade Studies on Best Source and Best Fusion Method for Global DTED2 over the CEOS- WGCV-TMSG Test Sites, University College London, 26 pp.

    Google Scholar 

  • Paul, F., Kääb, A., Maisch, M., Kellenberger, T., and Haeberli, W. (2002) The new remote-sensing-derived Swiss glacier inventory, I: Methods. Annals of Glaciology, 34, 355-361.

    Google Scholar 

  • Paul, F., Huggel, C., and Kääb, A. (2004) Combining satellite multispectral image data and a digital elevation model for mapping debris-covered glaciers. Remote Sensing of Environment, 89, 510-518.

    Google Scholar 

  • Raper, S.C.B., and Braithwaite, R.J. (2009) Glacier volume response time and its links to climate and topography based on a conceptual model of glacier hypsometry. The Cryosphere, 3, 183-194.

    Google Scholar 

  • Raup, B., Racoviteanu, A., Khalsa, S.J.S., Helm, C., Armstrong, R., and Arnaud, Y. (2006) The GLIMS geospatial database: A new tool for studying glacier change. Global and Planetary Change, 56, 101-110.

    Google Scholar 

  • Rudaya, N., Tarasov, P., Dorofeyuk, N., Solovieva, N., Kalugin, I., Andreev, A., Daryin, A., Diekmann, B., Reidel, F., Tserendash, N. et al. (2009) Holocene environments and climate in the Mongolian Altai reconstructed from the Hoton-Nur pollen and diatom records: A step towards better understanding climate dynamics in Central Asia. Quaternary Science Review, 28, 540-554.

    Google Scholar 

  • Selivanov, E.I. (1972) Neotectonics and Geomorphology of the Mongolian People’s Republic, Nedra State Publishing House, Moscow, 293 pp. [in Russian].

    Google Scholar 

  • Starkel, L. (1998) Geomorphic response to climatic and environmental changes along a Central Asian transect during the Holocene. Geomorphology, 23, 293-305.

    Google Scholar 

  • Surazakov, A.B., and Aizen, V.B. (2006) Estimating volume change of mountain glaciers using SRTM and map-based topographic data. IEEE Transactions on Geoscience and Remote Sensing, 44, 2991-2995.

    Google Scholar 

  • Toutin, T. (2008) ASTER DEMs for geomatic and geo- scientific applications: A review. International Journal of Remote Sensing, 29, 1855-1875.

    Google Scholar 

  • Tuvjargal, N., Ochirkhuyag, L., Tsolmon, R., and Khosbayar, B. (2008) Study on the glaciers of the Western Mongolia using PALSAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B7), 1027-1029.

    Google Scholar 

  • WWF Russia. (2001) Ecoregional Climate Change and Biodiversity Decline, Issue 1: Altai-Sayan Ecoregion, World Wildlife Fund, Moscow, Russia, 28 pp.

    Google Scholar 

Download references

Acknowledgments

This project was made possible through the generosity of the University of Montana and the American Center for Mongolian Studies. Ulrich Kamp thanks the Alexander von Humboldt Foundation, Germany, for awarding a research fellowship and the faculty of the Institute for Space Sciences at Freie Universitat Berlin for their hospitality. We thank the Global Land Ice Measurements from Space (GLIMS) program for providing ASTER imagery free of charge; and Jeffrey Olsenholler, University of Nebraska-Omaha, for ASTER DEM generation. ASTER data courtesy of NASA/GSFC/METI/Japan Space Systems, the U.S./Japan ASTER Science Team, and the GLIMS project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Leonard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Krumwiede, B.S., Kamp, U., Leonard, G.J., Kargel, J.S., Dashtseren, A., Walther, M. (2014). Recent Glacier Changes in the Mongolian Altai Mountains: Case Studies from Munkh Khairkhan and Tavan Bogd. In: Kargel, J., Leonard, G., Bishop, M., Kääb, A., Raup, B. (eds) Global Land Ice Measurements from Space. Springer Praxis Books(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79818-7_22

Download citation

Publish with us

Policies and ethics