Skip to main content

Inhibitors of Viral Entry

  • Chapter
Antiviral Strategies

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 189))

The entry of viruses into target cells involves a complex series of sequential steps, with opportunities for inhibition at every stage. Entry inhibitors exert their biological properties by inhibiting protein—protein interactions either within the viral envelope (Env) glycoproteins or between viral Env and host-cell receptors. The nature of resistance to entry inhibitors also differs from compounds inhibiting enzymatic targets due to their different modes of action and the relative variability in Env sequences both temporally and between patients. Two drugs that target HIV-1 entry, enfuvirtide and maraviroc, are now licensed for treatment of HIV-1 infection. The efficacy of these drugs validates entry as a point of intervention in viral life cycles and, in the context of HIV treatment, contributes to the growing armamentarium of antivirals which, in multidrug combinations, can effectively inhibit viral replication and prevent disease progression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abel S, Van der Ryst E, Muihead GJ, Rosario A, Edgington A, Weissgerber G (2003) Pharmacokinetics of single and multiple oral doses of UK-427,857 — A novel CCR5 antagonist in healthy olunteers. In: 10th conference on retroviruses and opportunistic infections. Boston, MA

    Google Scholar 

  • Aghokeng AF, Ewane L, Awazi B, Nanfack A, Delaporte E, Zekeng L, Peeters M (2005) Enfuvirtide binding domain is highly conserved in non-B HIV type 1 strains from Cameroon, West Central Africa. AIDS Res Hum Retroviruses 21:430–433

    PubMed  CAS  Google Scholar 

  • Aquaro S, D'Arrigo R, Svicher V, Perri GD, Caputo SL, Visco-Comandini U, Santoro M, Bertoli A, Mazzotta F, Bonora S, Tozzi V, Bellagamba R, Zaccarelli M, Narciso P, Antinori A, Perno CF (2006) Specific mutations in HIV-1 gp41 are associated with immunological success in HIV-1-infected patients receiving enfuvirtide treatment. J Antimicrob Chemother 58:714–722

    PubMed  CAS  Google Scholar 

  • Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y, Meguro K, Fujino M (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci USA 96:5698–5703

    PubMed  CAS  Google Scholar 

  • Baba M, Miyake H, Wang X, Okamotoand M, Takashima K (2006) Isolation and characterization of human immunodeficiency virus type 1 resistant to the small-molecule CCR5 antagonist TAK-652. Antimicrob Agents Chemother 51:707–715

    PubMed  Google Scholar 

  • Berger EA, Doms RW, Fenyo EM, Korber BT, Littman DR, Moore JP, Sattentau QJ, Schuitemaker H, Sodroski J, Weiss RA (1998) A new classification for HIV-1. Nature 391:240

    PubMed  CAS  Google Scholar 

  • Berson JF, Long D, Doranz BJ, Rucker J, Jirik FR, Doms RW (1996) A seven-transmembrane domain receptor involved in fusion and entry of T-cell-tropic human immunodeficiency virus type 1 strains. J Virol 70:6288–6295

    PubMed  CAS  Google Scholar 

  • Brasseur R, Cornet B, Burny A, Vandenbranden M, Ruysschaert JM (1988) Mode of insertion into a lipid membrane of the N-terminal HIV gp41 peptide segment. AIDS Res Hum Retroviruses 4:83–90

    PubMed  CAS  Google Scholar 

  • Brumme ZL, Goodrich J, Mayer HB, Brumme CJ, Henrick BM, Wynhoven B, Asselin JJ, Cheung PK, Hogg RS, Montaner JS, Harrigan PR (2005) Molecular and clinical epidemiology of CXCR4-using HIV-1 in a large population of antiretroviral-naive individuals. J Infect Dis 192:466–474

    PubMed  CAS  Google Scholar 

  • Carmona R, Perez-Alvarez L, Munoz M, Casado G, Delgado E, Sierra M, Thomson M, Vega Y, Vazquez de Parga E, Contreras G, Medrano L, Najera R (2005) Natural resistance-associated mutations to Enfuvirtide (T20) and polymorphisms in the gp41 region of different HIV-1 genetic forms from T20 naive patients. J Clin Virol 32:248–253

    PubMed  CAS  Google Scholar 

  • Castonguay LA, Weng Y, Adolfsen W, Di Salvo J, Kilburn R, Caldwell CG, Daugherty BL, Finke PE, Hale JJ, Lynch CL, Mills SG, MacCoss M, Springer MS, DeMartino JA (2003) Binding of 2-aryl-4-(piperidin-1-yl)butanamines and 1,3,4-trisubstituted pyrrolidines to human CCR5: a molecular modeling-guided mutagenesis study of the binding pocket. Biochemistry 42:1544–1550

    PubMed  CAS  Google Scholar 

  • Chan DC, Kim PS (1998) HIV entry and its inhibition. Cell 93:681–684

    PubMed  CAS  Google Scholar 

  • Chan DC, Fass D, Berger JM, Kim PS (1997) Core structure of gp41 from the HIV envelope glycoprotein. Cell 89:263–273

    PubMed  CAS  Google Scholar 

  • Chan DC, Chutkowski CT, Kim PS (1998) Evidence that a prominent cavity in the coiled coil of HIV type 1 gp41 is an attractive drug target. Proc Natl Acad Sci USA 95:15613–15617

    PubMed  CAS  Google Scholar 

  • Chen CH, Matthews TJ, McDanal CB, Bolognesi DP, Greenberg ML (1995) A molecular clasp in the human immunodeficiency virus (HIV) type 1 TM protein determines the anti-HIV activity of gp41 derivatives: implication for viral fusion. J Virol 69:3771–3777

    PubMed  CAS  Google Scholar 

  • Chibo D, Roth N, Roulet V, Skrabal K, Gooey M, Carolan L, Nicholls J, Papadakis A, Birch C (2007) Virological fitness of HIV in patients with resistance to enfuvirtide. Aids 21:1974–1977

    PubMed  CAS  Google Scholar 

  • Cilliers T, Patience T, Pillay C, Papathanasopoulos M, Morris L (2004) Sensitivity of HIV type 1 subtype C isolates to the entry inhibitor T-20. AIDS Res Hum Retroviruses 20:477–482

    PubMed  CAS  Google Scholar 

  • Cocchi F, DeVico AL, Garzino-Demo A, Arya SK, Gallo RC, Lusso P (1995) Identification of RANTES, MIP-1 alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. Science 270:1811–1815

    PubMed  CAS  Google Scholar 

  • Cohen C, DeJesus E, Mills A, Pierone Jr G, Kumar P, Ruane P, Elion R, Fusco G, Levy R, Solomon K, Erickson-Viitanen S (2007) Potent antiretroviral activity of the once-daily CCR5 antagonist INCB009471 over 14 days of monotherapy. In: 4th international AIDS society conference, Sydney, Australia, 22–25 July 2007. Abstract TUAB106

    Google Scholar 

  • Collier AC, Coombs RW, Katzenstein D, Holodniy M, Gibson J, Mordenti J, Izu AE, Duliege AM, Ammann AJ, Merigan T et al (1995) Safety, pharmacokinetics, and antiviral response of CD4-immunoglobulin G by intravenous bolus in AIDS and AIDS-related complex. J Acquir Immune Defic Syndr Hum Retrovirol 10:150–156

    PubMed  CAS  Google Scholar 

  • Dalgleish AG, Beverley PC, Clapham PR, Crawford DH, Greaves MF, Weiss RA (1984) The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature 312:763–767

    PubMed  CAS  Google Scholar 

  • Deeks SG, Lu J, Hoh R, Neilands TB, Beatty G, Huang W, Liegler T, Hunt P, Martin JN, Kuritzkes DR (2007) Interruption of enfuvirtide in HIV-1 infected adults with incomplete viral suppression on an enfuvirtide-based regimen. J Infect Dis 195:387–391

    PubMed  CAS  Google Scholar 

  • Dejucq N, Simmons G, Clapham PR (2000) T-cell line adaptation of human immunodeficiency virus type 1 strain SF162: effects on envelope, vpu and macrophage-tropism. J Gen Virol 81:2899–2904

    PubMed  CAS  Google Scholar 

  • Deng H, Liu R, Ellmeier W, Choe S, Unutmaz D, Burkhart M, Di Marzio P, Marmon S, Sutton RE, Hill CM, Davis CB, Peiper SC, Schall TJ, Littman DR, Landau NR (1996) Identification of a major co-receptor for primary isolates of HIV-1. Nature 381:661–666

    PubMed  CAS  Google Scholar 

  • Derdeyn CA, Decker JM, Sfakianos JN, Wu X, O'Brien WA, Ratner L, Kappes JC, Shaw GM, Hunter E (2000) Sensitivity of human immunodeficiency virus type 1 to the fusion inhibitor T-20 is modulated by coreceptor specificity defined by the V3 loop of gp120. J Virol 74:8358–8367

    PubMed  CAS  Google Scholar 

  • Derdeyn CA, Decker JM, Sfakianos JN, Zhang Z, O'Brien WA, Ratner L, Shaw GM, Hunter E (2001) Sensitivity of human immunodeficiency virus type 1 to fusion inhibitors targeted to the gp41 first heptad repeat involves distinct regions of gp41 and is consistently modulated by gp120 interactions with the coreceptor. J Virol 75:8605–8614

    PubMed  CAS  Google Scholar 

  • Dimitrov AS, Louis JM, Bewley CA, Clore GM, Blumenthal R (2005) Conformational changes in HIV-1 gp41 in the course of HIV-1 envelope glycoprotein-mediated fusion and inactivation. Biochemistry 44:12471–12479

    PubMed  CAS  Google Scholar 

  • Dorn CP, Finke PE, Oates B, Budhu RJ, Mills SG, MacCoss M, Malkowitz L, Springer MS, Daugherty BL, Gould SL, DeMartino JA, Siciliano SJ, Carella A, Carver G, Holmes K, Danzeisen R, Hazuda D, Kessler J, Lineberger J, Miller M, Schleif WA, Emini EA (2001) Antagonists of the human CCR5 receptor as anti-HIV-1 agents, part 1: discovery and initial structure-activity relationships for 1-amino-2-phenyl-4-(piperidin-1-yl)butanes. Bioorg Med Chem Lett 11:259–264

    PubMed  CAS  Google Scholar 

  • Dorr P, Westby M, Dobbs S, Griffin P, Irvine B, Macartney M, Mori J, Rickett G, Smith-Burchnell C, Napier C, Webster R, Armour D, Price D, Stammen B, Wood A, Perros M (2005) Maraviroc (UK-427,857), a potent, orally bioavailable, and selective small-molecule inhibitor of chemokine receptor CCR5 with broad-spectrum anti-human immunodeficiency virus type 1 activity. Antimicrob Agents Chemother 49:4721–4732

    PubMed  CAS  Google Scholar 

  • Dorr P, Westby M, McFadyen L, Mori J, Davis J, Perruccio F, Jones R, Stupple P, Middleton D, Perros M (2008) PF-232798, a second generation oral CCR5 antagonist. In: 15th conference on retroviruses and opportunistic infections, Boston, USA, 3–6 February. Abstract 737

    Google Scholar 

  • Dragic T, Litwin V, Allaway GP, Martin SR, Huang Y, Nagashima KA, Cayanan C, Maddon PJ, Koup RA, Moore JP, Paxton WA (1996) HIV-1 entry into CD4+ cells is mediated by the chemokine receptor CC-CKR-5. Nature 381:667–673

    PubMed  CAS  Google Scholar 

  • Dragic T, Trkola A, Thompson DA, Cormier EG, Kajumo FA, Maxwell E, Lin SW, Ying W, Smith SO, Sakmar TP, Moore JP (2000) A binding pocket for a small molecule inhibitor of HIV-1 entry within the transmembrane helices of CCR5. Proc Natl Acad Sci USA 97:5639–5644

    PubMed  CAS  Google Scholar 

  • Dwyer JJ, Wilson KL, Davison DK, Freel SA, Seedorff JE, Wring SA, Tvermoes NA, Matthews TJ, Greenberg ML, Delmedico MK (2007) Design of helical, oligomeric HIV-1 fusion inhibitor peptides with potent activity against enfuvirtide-resistant virus. Proc Natl Acad Sci USA 104:12772–12777

    PubMed  CAS  Google Scholar 

  • Erickson-Viitanen S, Abremski1 K, Solomon K, Levy R, Lam E, Whitcomb JM, Lloyd Jr R, Mathis R, Reeves J, Burns D (2008) Co-receptor tropism, ENV genotype, and in vitro susceptibility to CCR5 antagonists during a 14-day monotherapy study with INCB9471. In: 15th conference on retroviruses and opportunistic infections, Boston, USA, February 3–6. Abstract 862

    Google Scholar 

  • Este JA (2002) Sch-351125 and Sch-350634. Curr Opin Investig Drugs 3:379–383

    PubMed  CAS  Google Scholar 

  • Etemad-Moghadam B, Rhone D, Steenbeke T, Sun Y, Manola J, Gelman R, Fanton JW, Racz P, Tenner-Racz K, Axthelm MK, Letvin NL, Sodroski J (2001) Membrane-fusing capacity of the human immunodeficiency virus envelope proteins determines the efficiency of CD4+ T-cell depletion in macaques infected by a simian-human immunodeficiency virus. J Virol 75:5646–5655

    Google Scholar 

  • Fatkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 11:1170–1172

    PubMed  Google Scholar 

  • Feng Y, Broder CC, Kennedy PE, Berger EA (1996) HIV-1 entry cofactor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science 272:872–877

    PubMed  CAS  Google Scholar 

  • Furuta RA, Wild CT, Weng Y, Weiss CD (1998) Capture of an early fusion-active conformation of HIV-1 gp41. Nat Struct Biol 5:276–279

    PubMed  CAS  Google Scholar 

  • Gallaher WR (1987) Detection of a fusion peptide sequence in the transmembrane protein of human immunodeficiency virus. Cell 50:327–328

    PubMed  CAS  Google Scholar 

  • Greenberg ML, Cammack N (2004) Resistance to enfuvirtide, the first HIV fusion inhibitor. J Antimicrob Chemother 54:333–340

    PubMed  CAS  Google Scholar 

  • Hanna G, Lalezari J, Hellinger J, Wohl D, Masterson T, Fiske W, Kadow J, Lin P, Giordano M, Colonno R, Grasela D (2004) Antiviral activity, safety, and tolerability of a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1-infected subjects a novel, oral small-molecule HIV-1 attachment inhibitor, BMS-488043, in HIV-1-infected subjects. In: 11th conference on retroviruses and opportunistic infections, San Francisco, CA

    Google Scholar 

  • Harrigan PR, Montaner JS, Wegner SA, Verbiest W, Miller V, Wood R, Larder BA (2001) Worldwide variation in HIV-1 phenotypic susceptibility in untreated individuals: biologically relevant values for resistance testing. Aids 15:1671–1677

    PubMed  CAS  Google Scholar 

  • Harrowe G, Cheng-Mayer C (1995) Amino acid substitutions in the V3 loop are responsible for adaptation to growth in transformed T-cell lines of a primary human immunodeficiency virus type 1. Virology 210:490–494

    PubMed  CAS  Google Scholar 

  • He Y, Vassell R, Zaitseva M, Nguyen N, Yang Z, Weng Y, Weiss CD (2003) Peptides trap the human immunodeficiency virus type 1 envelope glycoprotein fusion intermediate at two sites. J Virol 77:1666–1671

    PubMed  CAS  Google Scholar 

  • Hendrix C (2004) Safety, phamacokinetics and antiviral activity of AMD3100, a selective CXCR4 receptor inhibitor, in HIV-1 infection. J Acquir Immune Defic Syndr 37:1253–1262

    PubMed  CAS  Google Scholar 

  • Heredia A, Gilliam B, DeVico A, Le N, Bamba D, Flinko R, Lewis G, Gallo RC, Redfield RR (2007) CCR5 density levels on primary CD4 T cells impact the replication and Enfuvirtide susceptibility of R5 HIV-1. Aids 21:1317–1322

    PubMed  Google Scholar 

  • Ho HT, Fan L, Nowicka-Sans B, McAuliffe B, Li CB, Yamanaka G, Zhou N, Fang H, Dicker I, Dalterio R, Gong YF, Wang T, Yin Z, Ueda Y, Matiskella J, Kadow J, Clapham P, Robinson J, Colonno R, Lin PF (2006) Envelope conformational changes induced by human immunodeficiency virus type 1 attachment inhibitors prevent CD4 binding and downstream entry events. J Virol 80:4017–4025

    PubMed  CAS  Google Scholar 

  • Holguin A, Faudon JL, Labernardiere JL, Soriano V (2007) Susceptibility of HIV-1 non-B subtypes and recombinant variants to Enfuvirtide. J Clin Virol 38:176–180

    PubMed  CAS  Google Scholar 

  • Jacobson JM, Lowy I, Fletcher CV, O'Neill TJ, Tran DN, Ketas TJ, Trkola A, Klotman ME, Maddon PJ, Olson WC, Israel RJ (2000) Single-dose safety, pharmacology, and antiviral activity of the human immunodeficiency virus (HIV) type 1 entry inhibitor PRO 542 in HIV-infected adults. J Infect Dis 182:326–329

    PubMed  CAS  Google Scholar 

  • Ji C, Brandt M, Dioszegi M, Jekle A, Schwoerer S, Challand S, Zhang J, Chen Y, Zautke L, Achhammer G, Baehner M, Kroetz S, Heilek-Snyder G, Schumacher R, Cammack N, Sankuratri S (2007) Novel CCR5 monoclonal antibodies with potent and broad-spectrum anti-HIV activities. Antiviral Res 74:125–137

    PubMed  CAS  Google Scholar 

  • Jiang S, Lin K, Strick N, Neurath AR (1993) Inhibition of HIV-1 infection by a fusion domain binding peptide from the HIV-1 envelope glycoprotein GP41. Biochem Biophys Res Commun 195:533–538

    PubMed  CAS  Google Scholar 

  • Kadow J, Wang HG, Lin PF (2006) Small-molecule HIV-1 gp120 inhibitors to prevent HIV-1 entry: an emerging opportunity for drug development. Curr Opin Investig Drugs 7:721–726

    PubMed  CAS  Google Scholar 

  • Karlsson GB, Halloran M, Schenten D, Lee J, Racz P, Tenner-Racz K, Manola J, Gelman R, Etemad-Moghadam B, Desjardins E, Wyatt R, Gerard NP, Marcon L, Margolin D, Fanton J, Axthelm MK, Letvin NL, Sodroski J (1998) The envelope glycoprotein ectodomains determine the efficiency of CD4+ T lymphocyte depletion in simian- human immunodeficiency virus-infected macaques. J Exp Med 188:1159–1171

    PubMed  CAS  Google Scholar 

  • Kilby JM, Hopkins S, Venetta TM, DiMassimo B, Cloud GA, Lee JY, Alldredge L, Hunter E, Lambert D, Bolognesi D, Matthews T, Johnson MR, Nowak MA, Shaw GM, Saag MS (1998) Potent suppression of HIV-1 replication in humans by T-20, a peptide inhibitor of gp41-mediated virus entry. Nat Med 4:1302–1307

    PubMed  CAS  Google Scholar 

  • Kilby JM, Lalezari JP, Eron JJ, Carlson M, Cohen C, Arduino RC, Goodgame JC, Gallant JE, Volberding P, Murphy RL, Valentine F, Saag MS, Nelson EL, Sista PR, Dusek A (2002) The safety, plasma pharmacokinetics, and antiviral activity of subcutaneous enfuvirtide (T-20), a peptide inhibitor of gp41-mediated virus fusion, in HIV-infected adults. AIDS Res Hum Retro-viruses 18:685–693

    CAS  Google Scholar 

  • Kitchen CM, Lu J, Suchard MA, Hoh R, Martin JN, Kuritzkes DR, Deeks SG (2006) Continued evolution in gp41 after interruption of enfuvirtide in subjects with advanced HIV type 1 disease. AIDS Res Hum Retroviruses 22:1260–1266

    PubMed  CAS  Google Scholar 

  • Kitrinos K, Labranche C, Stanhope M, Madsen H, Demarest J (2005) Clonal analysis detects preexisting R5X4-tropic virus in patient demonstrating population-level tropism switch on 873140 monotherapy. Antivir Ther 10:S68

    Google Scholar 

  • Klatzmann D, Champagne E, Chamaret S, Gruest J, Guetard D, Hercend T, Gluckman JC, Montagnier L (1984) T-lymphocyte T4 molecule behaves as the receptor for human retrovirus L AV. Nature 312:767–768

    PubMed  CAS  Google Scholar 

  • Kliger Y, Gallo SA, Peisajovich SG, Munoz-Barroso I, Avkin S, Blumenthal R, Shai Y (2001) Mode of action of an antiviral peptide from HIV-1. Inhibition at a post-lipid mixing stage. J Biol Chem 276:1391–1397

    PubMed  CAS  Google Scholar 

  • Kuritzkes DR, Jacobson J, Powderly WG, Godofsky E, DeJesus E, Haas F, Reimann KA, Larson JL, Yarbough PO, Curt V, Shanahan WR Jr (2004) Antiretroviral activity of the anti-CD4 monoclonal antibody TNX-355 in patients infected with HIV type 1. J Infect Dis 189:286–291

    PubMed  CAS  Google Scholar 

  • Kwong PD, Wyatt R, Robinson J, Sweet RW, Sodroski J, Hendrickson WA (1998) Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody. Nature 393:648–659

    PubMed  CAS  Google Scholar 

  • Labrosse B, Morand-Joubert L, Goubard A, Rochas S, Labernardiere JL, Pacanowski J, Meynard JL, Hance AJ, Clavel F, Mammano F (2006) Role of the envelope genetic context in the development of enfuvirtide resistance in human immunodeficiency virus type 1-infected patients. J Virol 80:8807–8819

    PubMed  CAS  Google Scholar 

  • Lalezari JP, DeJesus E, Northfelt DW, Richmond G, Wolfe P, Haubrich R, Henry D, Powderly W, Becker S, Thompson M, Valentine F, Wright D, Carlson M, Riddler S, Haas FF, DeMasi R, Sista PR, Salgo M, Delehanty J (2003a) A controlled Phase II trial assessing three doses of enfuvirtide (T-20) in combination with abacavir, amprenavir, ritonavir and efavirenz in non- nucleoside reverse transcriptase inhibitor-naive HIV-infected adults. Antivir Ther 8:279–287

    CAS  Google Scholar 

  • Lalezari JP, Eron JJ, Carlson M, Cohen C, DeJesus E, Arduino RC, Gallant JE, Volberding P, Murphy RL, Valentine F, Nelson EL, Sista PR, Dusek A, Kilby JM (2003b) A phase II clinical study of the long-term safety and antiviral activity of enfuvirtide-based antiretroviral therapy. Aids 17:691–698

    CAS  Google Scholar 

  • Lalezari JP, Henry K, O'Hearn M, Montaner JS, Piliero PJ, Trottier B, Walmsley S, Cohen C, Kuritzkes DR, Eron JJ Jr, Chung J, DeMasi R, Donatacci L, Drobnes C, Delehanty J, Salgo M (2003c) Enfuvirtide, an HIV-1 fusion inhibitor, for drug-resistant HIV infection in North and South America. N Engl J Med 348:2175–2185

    CAS  Google Scholar 

  • Lalezari JP, Bellos NC, Sathasivam K, Richmond GJ, Cohen CJ, Myers RA Jr, Henry DH, Raskino C, Melby T, Murchison H, Zhang Y, Spence R, Greenberg ML, Demasi RA, Miralles GD (2005b) T-1249 retains potent antiretroviral activity in patients who had experienced virological failure while on an enfuvirtide-containing treatment regimen. J Infect Dis 191:1155–1163

    CAS  Google Scholar 

  • Lalezari J, Zhang Y, DeMasi R, Salgo M, Miralles G, Team TT-S (2004) Long term safety of T-1249, a potent inhibitor of HIV fusion. In: 44th interscience conference on antimicrobial agents and chemotherapy (ICAAC), WA, USA

    Google Scholar 

  • Lalezari J, Thompson M, Kumar P, Piliero P, Davey R, Patterson K, Shachoy-Clark A, Adkison K, Demarest J, Lou Y, Berrey M, Piscitelli S (2005a) Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. Aids 19:1443–1448

    CAS  Google Scholar 

  • Lalezari J, Goodrich J, DeJesus E, Lampiris H, Gulick R, Saag M, Ridgway C, McHale M, van der Ryst E, Mayer H (2007) Efficacy and safety of maraviroc plus optimized background therapy in viremic ART-experienced patients infected with CCR5-tropic HIV-1: 24-week results of aphase 2b/3 study in the US and Canada. In: 14th conference on retroviruses and opportunistic infections, Los Angeles, USA, February 25–28. Abstract 104bLB

    Google Scholar 

  • Lazzarin A, Clotet B, Cooper D, Reynes J, Arasteh K, Nelson M, Katlama C, Stellbrink HJ, Delfraissy JF, Lange J, Huson L, DeMasi R, Wat C, Delehanty J, Drobnes C, Salgo M (2003) Efficacy of enfuvirtide in patients infected with drug-resistant HIV-1 in Europe and Australia. N Engl J Med 348:2186–2195

    PubMed  CAS  Google Scholar 

  • Lewis M, Simpson P, Fransen S, Huang W, Whitcomb JM, Mosley M, Robertson DL, Mansfield R, Ciaramella G, Westby M (2007) CXCR4-using virus detected in patients receiving maraviroc in the Phase III studies MOTIVATE 1 and 2 originates from a pre-existing minority of CXCR4-using virus. Antivir Ther 12:S65

    Google Scholar 

  • Lin PF, Blair W, Wang T, Spicer T, Guo Q, Zhou N, Gong YF, Wang HG, Rose R, Yamanaka G, Robinson B, Li CB, Fridell R, Deminie C, Demers G, Yang Z, Zadjura L, Meanwell N, Colonno R (2003) A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc Natl Acad Sci USA 100:11013–11018

    PubMed  CAS  Google Scholar 

  • Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86:367–377

    PubMed  CAS  Google Scholar 

  • Liu S, Lu H, Niu J, Xu Y, Wu S, Jiang S (2005) Different from the HIV fusion inhibitor C34, the anti-HIV drug Fuzeon (T-20) inhibits HIV-1 entry by targeting multiple sites in gp41 and gp120. J Biol Chem 280:11259–11273

    PubMed  CAS  Google Scholar 

  • Lu J, Sista P, Giguel F, Greenberg M, Kuritzkes DR (2004) Relative replicative fitness of human immunodeficiency virus type 1 mutants resistant to enfuvirtide (T-20). J Virol 78:4628–4637

    PubMed  CAS  Google Scholar 

  • Lu M, Blacklow SC, Kim PS (1995) A trimeric structural domain of the HIV-1 transmembrane glycoprotein. Nat Struct Biol 2:1075–1082

    PubMed  CAS  Google Scholar 

  • Maddon PJ, Dalgleish AG, McDougal JS, Clapham PR, Weiss RA, Axel R (1986) The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348

    PubMed  CAS  Google Scholar 

  • Maeda K, Nakata H, Koh Y, Miyakawa T, Ogata H, Takaoka Y, Shibayama S, Sagawa K, Fukushima D, Moravek J, Koyanagi Y, Mitsuya H (2004a) Spirodiketopiperazine-based CCR5 inhibitor which preserves CC-chemokine/CCR5 interactions and exerts potent activity against R5 human immunodeficiency virus type 1 in vitro. J Virol 78:8654–8662

    CAS  Google Scholar 

  • Maeda K, Ogata H, Harada S, Tojo Y, Miyakawa T, Nakata H, Takaoka Y, Shibayama S, Sagawa K, Daikichi F, Moravek J, Arnold E, Mitsuya H (2004b) Determination of binding sites of a unique CCR5 inhibitor AK602 on human CCR5. In: 11th conference on retroviruses and opportunistic infections, San Francisco, CA

    Google Scholar 

  • Maeda Y, Foda M, Matsushita S, Harada S (2000) Involvement of both the V2 and V3 regions of the CCR5-tropic human immunodeficiency virus type 1 envelope in reduced sensitivity to macrophage inflammatory protein 1alpha. J Virol 74:1787–1793

    PubMed  CAS  Google Scholar 

  • Malashkevich VN, Chan DC, Chutkowski CT, Kim PS (1998) Crystal structure of the simian immunodeficiency virus (SIV) gp41 core: conserved helical interactions underlie the broad inhibitory activity of gp41 peptides. Proc Natl Acad Sci USA 95:9134–9139

    PubMed  CAS  Google Scholar 

  • Marcelin AG, Reynes J, Yerly S, Ktorza N, Segondy M, Piot JC, Delfraissy JF, Kaiser L, Perrin L, Katlama C, Calvez V (2004) Characterization of genotypic determinants in HR-1 and HR-2 gp41 domains in individuals with persistent HIV viraemia under T-20. Aids 18:1340–1342

    PubMed  CAS  Google Scholar 

  • Marozsan AJ, Kuhmann SE, Morgan T, Herrera C, Rivera-Troche E, Xu S, Baroudy BM, Strizki J, Moore JP (2005) Generation and properties of a human immunodeficiency virus type 1 isolate resistant to the small molecule CCR5 inhibitor, SCH-417690 (SCH-D). Virology 338:182–199

    PubMed  CAS  Google Scholar 

  • Mayer H, van der Ryst E, Saag M, Clotet B, Fatkenheuer G, Clumeck N, Turner K, Goodrich J (2006) Safety and efficacy of Maraviroc (MVC), a novel CCR5 antagonist, when used in combination with optimized background therapy (OBT) for the treatment of antiretroviral-experienced subjects infected with dual/mixed-Tropic HIV-1: 24-week results of a phase 2b exploratory trial. In: 16th international AIDS conference, Toronto, Canada, 13–18 August. Abstract THLB0215

    Google Scholar 

  • Melby T, DeMasi R, Miralles G, Heilek-Snyder G, Greenberg M (2005) Evolution of enfuvirtide resistance in longitudinal samples obtained after continued enfuvirtide dosing post-virological failure. In: 14th international drug resistance workshop, QC, Canada. Antiviral therapy, Suppl 1

    Google Scholar 

  • Melby T, Despirito M, Demasi R, Heilek-Snyder G, Greenberg ML, Graham N (2006a) HIV-1 coreceptor use in triple-class treatment-experienced patients: baseline prevalence, correlates, and relationship to enfuvirtide response. J Infect Dis 194:238–246

    CAS  Google Scholar 

  • Melby T, Sista P, Demasi R, Kirkland T, Roberts N, Salgo M, Heilek-Snyder G, Cammack N, Matthews TJ, Greenberg ML (2006b) Characterization of envelope glycoprotein gp41 genotype and phenotypic susceptibility to enfuvirtide at baseline and on treatment in the phase III clinical trials TORO-1 and TORO-2. AIDS Res Hum Retroviruses 22:375–385

    CAS  Google Scholar 

  • Melby T, Demasi R, Cammack N, Miralles GD, Greenberg ML (2007a) Evolution of genotypic and phenotypic resistance during chronic treatment with the fusion inhibitor T-1249. AIDS Res Hum Retroviruses 23:1366–1373

    CAS  Google Scholar 

  • Melby TE, Despirito M, Demasi RA, Heilek G, Thommes JA, Greenberg ML, Graham N (2007b) Association between specific enfuvirtide resistance mutations and CD4 cell response during enfuvirtide-based therapy. Aids 21:2537–2539

    CAS  Google Scholar 

  • Melikyan GB, Markosyan RM, Hemmati H, Delmedico MK, Lambert DM, Cohen FS (2000) Evidence that the transition of HIV-1 gp41 into a six-helix bundle, not the bundle configuration, induces membrane fusion. J Cell Biol 151:413–424

    PubMed  CAS  Google Scholar 

  • Menzo S, Castagna A, Monachetti A, Hasson H, Danise A, Carini E, Bagnarelli P, Lazzarin A, Clementi M (2004) Genotype and phenotype patterns of human immunodeficiency virus type 1 resistance to enfuvirtide during long-term treatment. Antimicrob Agents Chemother 48:3253–3259

    PubMed  CAS  Google Scholar 

  • Miller SA, Tollefson S, Crowe JE Jr, Williams JV, Wright DW (2007) Examination of a fusogenic hexameric core from human metapneumovirus and identification of a potent synthetic peptide inhibitor from the heptad repeat 1 region. J Virol 81:141–149

    PubMed  CAS  Google Scholar 

  • Mink M, Mosier SM, Janumpalli S, Davison D, Jin L, Melby T, Sista P, Erickson J, Lambert D, Stanfield-Oakley SA, Salgo M, Cammack N, Matthews T, Greenberg ML (2005) Impact of human immunodeficiency virus type 1 gp41 amino acid substitutions selected during enfuvirtide treatment on gp41 binding and antiviral potency of enfuvirtide in vitro. J Virol 79:12447–12454

    PubMed  CAS  Google Scholar 

  • Mirsaliotis A, Lamb D, Brighty DW (2008) Nonhelical leash and alpha-helical structures determine the potency of a peptide antagonist of human T-cell leukemia virus entry. J Virol 82:4965–4973

    PubMed  CAS  Google Scholar 

  • Mori J, Mosley M, Lewis M, Simpson P, Tomas J, Huang W, Whitcomb JM, Ciaramella G, Westby M (2007) Characterization of maraviroc resistance in patients failing treatment with CCR5-tropic virus in MOTIVATE 1 and MOTIVATE 2. Antivir Ther 12:S12

    Google Scholar 

  • Moyle GJ, Wildfire A, Mandalia S, Mayer H, Goodrich J, Whitcomb J, Gazzard BG (2005) Epidemiology and predictive factors for chemokine receptor use in HIV-1 infection. J Infect Dis 191:866–872

    PubMed  Google Scholar 

  • Mueller A, Strange PG (2004) The chemokine receptor, CCR5. Int J Biochem Cell Biol 36:35–38

    PubMed  CAS  Google Scholar 

  • Munoz-Barroso I, Durell S, Sakaguchi K, Appella E, Blumenthal R (1998) Dilation of the human immunodeficiency virus-1 envelope glycoprotein fusion pore revealed by the inhibitory action of a synthetic peptide from gp41. J Cell Biol 140:315–323

    Google Scholar 

  • Munoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R (1999) Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J Virol 73:6089–6092

    Google Scholar 

  • Murga JD, Franti M, Pevear DC, Maddon PJ, Olson WC (2006) Potent antiviral synergy between monoclonal antibody and small-molecule CCR5 inhibitors of human immunodeficiency virus type 1. Antimicrob Agents Chemother 50:3289–3296

    PubMed  CAS  Google Scholar 

  • Nelson M, Arasteh K, Clotet B, Cooper DA, Henry K, Katlama C, Lalezari JP, Lazzarin A, Montaner JS, O'Hearn M, Piliero PJ, Reynes J, Trottier B, Walmsley SL, Cohen C, Eron JJ Jr, Kuritzkes DR, Lange J, Stellbrink HJ, Delfraissy JF, Buss NE, Donatacci L, Wat C, Smiley L, Wilkinson M, Valentine A, Guimaraes D, Demasi R, Chung J, Salgo MP (2005) Durable efficacy of enfuvirtide over 48 weeks in heavily treatment-experienced HIV-1-infected patients in the T-20 versus optimized background regimen only 1 and 2 clinical trials. J Acquir Immune Defic Syndr 40:404–412

    PubMed  CAS  Google Scholar 

  • Nelson M, Fatkenheuer G, Konourina I, Lazzarin A, Clumeck N, Horban A, Tawadrous M, Sullivan J, Mayer H, van der Ryst E (2007) Efficacy and safety of maraviroc plus optimized background therapy in viremic, ART-experienced patients infected with CCR5-tropic HIV-1 in Europe, Australia, and North America: 24-week results In: 14th conference on retroviruses and opportunistic infections, Los Angeles, USA, February 25–28. Abstract 104aLB

    Google Scholar 

  • Nishikawa M, Takashima K, Nishi T, Furuta RA, Kanzaki N, Yamamoto Y, Fujisawa J (2005) Analysis of binding sites for the new small-molecule CCR5 antagonist TAK-220 on human CCR5. Antimicrob Agents Chemother 49:4708–4715

    PubMed  CAS  Google Scholar 

  • Pastore C, Ramos A, Mosier DE (2004) Intrinsic obstacles to human immunodeficiency virus type 1 coreceptor switching. J Virol 78:7565–7574

    PubMed  CAS  Google Scholar 

  • Pastore C, Nedellec R, Ramos A, Pontow S, Ratner L, Mosier DE (2006) Human immunodeficiency virus type 1 coreceptor switching: V1/V2 gain-of-fitness mutations compensate for V3 loss-of-fitness mutations. J Virol 80:750–758

    PubMed  CAS  Google Scholar 

  • Platt EJ, Durnin JP, Kabat D (2005) Kinetic factors control efficiencies of cell entry, efficacies of entry inhibitors, and mechanisms of adaptation of human immunodeficiency virus. J Virol 79:4347–4356

    PubMed  CAS  Google Scholar 

  • Poveda E, Rodes B, Lebel-Binay S, Faudon JL, Jimenez V, Soriano V (2005) Dynamics of enfuvir-tide resistance in HIV-infected patients during and after long-term enfuvirtide salvage therapy. J Clin Virol 34:295–301

    PubMed  CAS  Google Scholar 

  • Pugach P, Marozsan AJ, Ketas TJ, Landes EL, Moore JP, Kuhmann SE (2007) HIV-1 clones resistant to a small molecule CCR5 inhibitor use the inhibitor-bound form of CCR5 for entry. Virology 361:212–228

    PubMed  CAS  Google Scholar 

  • Quintana FJ, Gerber D, Kent SC, Cohen IR, Shai Y (2005) HIV-1 fusion peptide targets the TCR and inhibits antigen-specific T cell activation. J Clin Invest 115:2149–2158

    PubMed  CAS  Google Scholar 

  • Reeves JD, Gallo SA, Ahmad N, Miamidian JL, Harvey PE, Sharron M, Pohlmann S, Sfakianos JN, Derdeyn CA, Blumenthal R, Hunter E, Doms RW (2002) Sensitivity of HIV-1 to entry inhibitors correlates with envelope/coreceptor affinity, receptor density, and fusion kinetics. Proc Natl Acad Sci USA 99:16249–16254

    PubMed  CAS  Google Scholar 

  • Reeves JD, Miamidian JL, Biscone MJ, Lee FH, Ahmad N, Pierson TC, Doms RW (2004) Impact of mutations in the coreceptor binding site on human immunodeficiency virus type 1 fusion, infection, and entry inhibitor sensitivity. J Virol 78:5476–5485

    PubMed  CAS  Google Scholar 

  • Reeves JD, Lee F-H, Miamidian JL, Jabara CB, Juntilla MM, Doms RW (2005) Enfuvirtide resistance mutations: impact on human immunodeficiency virus envelope function, entry inhibitor sensitivity, and virus neutralization. J Virol 79:4991–4999

    PubMed  CAS  Google Scholar 

  • Rimsky LT, Shugars DC, Matthews TJ (1998) Determinants of human immunodeficiency virus type 1 resistance to gp41-derived inhibitory peptides. J Virol 72:986–993

    PubMed  CAS  Google Scholar 

  • Rizzuto CD, Wyatt R, Hernandez-Ramos N, Sun Y, Kwong PD, Hendrickson WA, Sodroski J (1998) A conserved HIV gp120 glycoprotein structure involved in chemokine receptor binding. Science 280:1949–1953

    PubMed  CAS  Google Scholar 

  • Russell D, Bakhtyari A, Jazrawi RP, Whitlock L, Ridgway C, McHale M, Abel S (2003) Multiple dose study to investigate the safety of UK-427,857 (100 mg or 300 mg) BID for 28 days in healthy males and females. In: 43rd interscience conference on antimicrobial agents and chemotherapy, Chicago, IL, USA

    Google Scholar 

  • Saez-Cirion A, Nir S, Lorizate M, Agirre A, Cruz A, Perez-Gil J, Nieva JL (2002) Sphingomyelin and cholesterol promote HIV-1 gp41 pretransmembrane sequence surface aggregation and membrane restructuring. J Biol Chem 277:21776–21785

    Google Scholar 

  • Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382:722–725

    PubMed  CAS  Google Scholar 

  • Schooley RT, Merigan TC, Gaut P, Hirsch MS, Holodniy M, Flynn T, Liu S, Byington RE, Henochowicz S, Gubish E et al (1990) Recombinant soluble CD4 therapy in patients with the acquired immunodeficiency syndrome (AIDS) and AIDS-related complex. A phase I-II escalating dosage trial. Ann Intern Med 112:247–253

    PubMed  CAS  Google Scholar 

  • Seibert C, Ying W, Gavrilov S, Tsamis F, Kuhmann SE, Palani A, Tagat JR, Clader JW, McCombie SW, Baroudy BM, Smith SO, Dragic T, Moore JP, Sakmar TP (2006) Interaction of small molecule inhibitors of HIV-1 entry with CCR5. Virology 349:41–54

    PubMed  CAS  Google Scholar 

  • Shearer WT, Israel RJ, Starr S, Fletcher CV, Wara D, Rathore M, Church J, DeVille J, Fenton T, Graham B, Samson P, Staprans S, McNamara J, Moye J, Maddon PJ, Olson WC (2000) Recombinant CD4-IgG2 in human immunodeficiency virus type 1-infected children: phase 1/2 study. The Pediatric AIDS Clinical Trials Group Protocol 351 Study Team. J Infect Dis 182:1774–1779

    PubMed  CAS  Google Scholar 

  • Sista PR, Melby T, Davison D, Jin L, Mosier S, Mink M, Nelson EL, DeMasi R, Cammack N, Salgo MP, Matthews TJ, Greenberg ML (2004) Characterization of determinants of genotypic and phenotypic resistance to enfuvirtide in baseline and on-treatment HIV-1 isolates. Aids 18:1787–1794

    PubMed  CAS  Google Scholar 

  • Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci USA 98:12718–12723

    PubMed  CAS  Google Scholar 

  • Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, Hipkin RW, Chou CC, Pugliese-Sivo C, Xiao Y, Tagat JR, Cox K, Priestley T, Sorota S, Huang W, Hirsch M, Reyes GR, Baroudy BM (2005) Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother 49:4911–4919

    PubMed  CAS  Google Scholar 

  • Tan K, Liu J-H, Wang J-H, Shen S, Lu M (1997) Atomic structure of a thermostable subdomain of HIV-1gp41. Proc Natl Acad Sci USA94:12303–12308

    PubMed  CAS  Google Scholar 

  • Trkola A, Ketas TJ, Nagashima KA, Zhao L, Cilliers T, Morris L, Moore JP, Maddon PJ, Olson WC (2001) Potent, broad-spectrum inhibition of human immunodeficiency virus type 1 by the CCR5 monoclonal antibody PRO 140. J Virol 75:579–588

    PubMed  CAS  Google Scholar 

  • Trkola A, Kuhmann SE, Strizki JM, Maxwell E, Ketas T, Morgan T, Pugach P, Xu S, Wojcik L, Tagat J, Palani A, Shapiro S, Clader JW, McCombie S, Reyes GR, Baroudy BM, Moore JP (2002) HIV-1 escape from a small molecule, CCR5-specific entry inhibitor does not involve CXCR4 use. Proc Natl Acad Sci USA 99:395–400

    PubMed  CAS  Google Scholar 

  • Tsibris AMN, Gulick RM, Su Z, Hughes MD, Flexner C, Wilkin T, Gross R, Hirsch M, Skolnick PR, Coakley E, Greaves WL, Kuritzkes DR (2007) In vivo emergence of HIV-1 resistance to the CCR5 antagonist vicriviroc: findings from ACTG A5211. Antivir Ther 12:S15

    Google Scholar 

  • Veiga S, Henriques S, Santos NC, Castanho M (2004) Putative role of membranes in the HIV fusion inhibitor enfuvirtide mode of action at the molecular level. Biochem J 377:107–110

    PubMed  CAS  Google Scholar 

  • Walker DK, Abel S, Comby P, Muirhead GJ, Nedderman AN, Smith DA (2005) Species differences in the disposition of the CCR5 antagonist, UK-427,857, a new potential treatment for HIV. Drug Metab Dispos 33:587–595

    PubMed  CAS  Google Scholar 

  • Watson C, Jenkinson S, Kazmierski W, Kenakin T (2005) The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67:1268–1282

    PubMed  CAS  Google Scholar 

  • Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46:1896–1905

    PubMed  CAS  Google Scholar 

  • Weissenhorn W, Dessen A, Harrison SC, Skehel JJ, Wiley DC (1997) Atomic structure of the ectodomain from HIV-1 gp41. Nature 387:426–430

    PubMed  CAS  Google Scholar 

  • Westby M, Lewis M, Whitcomb J, Youle M, Pozniak AL, James IT, Jenkins TM, Perros M, van der Ryst E (2006) Emergence of CXCR4-using human immunodeficiency virus type 1 (HIV-1) variants in a minority of HIV-1-infected patients following treatment with the CCR5 antagonist maraviroc is from a pretreatment CXCR4-using virus reservoir. J Virol 80:4909–4920

    PubMed  CAS  Google Scholar 

  • Westby M, Smith-Burchnell C, Mori J, Lewis M, Mosley M, Stockdale M, Dorr P, Ciaramella G, Perros M (2007) Reduced maximal inhibition in phenotypic susceptibility assays indicates that viral strains resistant to the CCR5 antagonist maraviroc utilize inhibitor-bound receptor for entry. J Virol 81:2359–2371

    PubMed  CAS  Google Scholar 

  • Whitcomb JM, Huang W, Fransen S, Limoli K, Toma J, Wrin T, Chappey C, Kiss LD, Paxinos EE, Petropoulos CJ (2007) Development and characterization of a novel single-cycle recombinant-virus assay to determine human immunodeficiency virus type 1 coreceptor tropism. Antimicrob Agents Chemother 51:566–575

    PubMed  CAS  Google Scholar 

  • Wild C, Oas T, McDanal C, Bolognesi D, Matthews T (1992) A synthetic peptide inhibitor of human immunodeficiency virus replication: correlation between solution structure and viral inhibition. Proc Natl Acad Sci USA 89:10537–10541

    PubMed  CAS  Google Scholar 

  • Wild C, Greenwell T, Matthews T (1993) A synthetic peptide from HIV-1 gp41 is a potent inhibitor of virus-mediated cell-cell fusion. AIDS Res Hum Retroviruses 9:1051–1053

    PubMed  CAS  Google Scholar 

  • Wood A, Armour D (2005) The discovery of the CCR5 receptor antagonist, UK-427,857, a new agent for the treatment of HIV infection and AIDS. Prog Med Chem 43:239–271

    PubMed  CAS  Google Scholar 

  • Wyatt R, Sodroski J (1998) The HIV-1 envelope glycoproteins: fusogens, antigens, and immuno-gens. Science 280:1884–1888

    PubMed  CAS  Google Scholar 

  • Wyatt R, Kwong PD, Desjardins E, Sweet RW, Robinson J, Hendrickson WA, Sodroski JG (1998) The antigenic structure of the HIV gp120 envelope glycoprotein. Nature 393:705–711

    PubMed  CAS  Google Scholar 

  • Xu L, Pozniak A, Wildfire A, Stanfield-Oakley SA, Mosier SM, Ratcliffe D, Workman J, Joall A, Myers R, Smit E, Cane PA, Greenberg ML, Pillay D (2005) Emergence and evolution of enfuvirtide resistance following long-term therapy involves heptad repeat 2 mutations within gp41. Antimicrob Agents Chemother 49:1113–1119

    PubMed  CAS  Google Scholar 

  • Yuan W, Craig S, Si Z, Farzan M, Sodroski J (2004) CD4-induced T-20 binding to human immunodeficiency virus type 1 gp120 blocks interaction with the CXCR4 coreceptor. J Virol 78:5448–5457

    PubMed  CAS  Google Scholar 

  • Zhang XQ, Sorensen M, Fung M, Schooley RT (2006) Synergistic in vitro antiretroviral activity of a humanized monoclonal anti-CD4 antibody (TNX-355) and enfuvirtide (T-20). Antimicrob Agents Chemother 50:2231–2233

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tom Melby or Mike Westby .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Melby, T., Westby, M. (2009). Inhibitors of Viral Entry. In: Kräusslich, HG., Bartenschlager, R. (eds) Antiviral Strategies. Handbook of Experimental Pharmacology, vol 189. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79086-0_7

Download citation

Publish with us

Policies and ethics