Skip to main content

Part of the book series: Heat and Mass Transfer ((HMT))

  • 2443 Accesses

Abstract

The quasi-one-dimensionalmodel of laminar flow in a heated capillary is presented. In the frame of this model the effect of channel size, initial temperature of the working fluid, wall heat flux and gravity on two-phase capillary flow is studied. It is shown that hydrodynamical and thermal characteristics of laminar flow in a heated capillary are determined by the physical properties of the liquid and its vapor, as well as the heat flux on the wall.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey DK, Ameel TA, Warrington RO, Savoie TI (1995) Single-phase forced convection heat transfer in microgeometries: a review. ASME IECEC Paper ES 396:301–310

    Google Scholar 

  • Bowers MB, Mudawar I (1994a) High flux boiling in low flowrate, low pressure drop mini-channel and micro-channel heat sink. Int J Heat Mass Transfer 37:321–332

    Article  Google Scholar 

  • Bowers MB, Mudawar I (1994b) Two-phase electronic cooling using mini-channel and micro-channel heat sink. Part 2: Flow rate and pressure drop constraints. J Electron Packag ASME 116:298–305

    Article  Google Scholar 

  • Carey VP (1992) Liquid–vapour phase-change phenomena. Hemisphere, Washington, DC

    Google Scholar 

  • Collier SP (1981) Convective boiling and condensation. McGraw-Hill, New York

    Google Scholar 

  • Ha JM, Peterson GP (1998) Capillary performance of evaporation flow in micro grooves: an analytical approach for very small tilt angles. ASME J Heat Transfer 120:452–457

    Article  Google Scholar 

  • Hetsroni G, Yarin LP, Pogrebnyak E (2004) Onset of flow instability in a heated capillary tube. Int J Multiphase Flow 30:1424–1449

    Google Scholar 

  • Khrustalev D, Faghri A (1994) Thermal analysis of microheat pipe. J Heat Transfer ASME 116:189–198

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1995) Heat transfer during evaporation on capillary grooved structure of heat pipes. J Heat Transfer ASME 117:740–747

    Article  Google Scholar 

  • Khrustalev D, Faghri A (1996) Fluid flow effect in evaporation from liquid–vapor meniscus. Trans ASME J Heat Transfer 118:725–730

    Article  Google Scholar 

  • Landau LD, Lifshitz EM (1959) Fluid mechanics, 2nd edn. Pergamon, London

    Google Scholar 

  • Landerman CS (1994) Micro-channel flow boiling mechanisms leading to Burnout. J Heat Transfer Electron Syst ASME HTD-292:124–136

    Google Scholar 

  • Levich VG (1962) Physicochemical hydrodynamics. Prentice Hall, London

    Google Scholar 

  • Morijama K, Inoue A (1992) The thermohydraulic characteristics of two-phase flow in extremely narrow channels (the frictional pressure drop and heat transfer of boiling two-phase flow, analytical model). Heat Transfer Jpn Res 21:838–856

    Google Scholar 

  • Morris SJS (2003) The evaporating meniscus in the channel. J Fluid Mech 494:297–317

    Article  MATH  MathSciNet  Google Scholar 

  • Peles YP, Yarin LP, Hetsroni G (2000) Thermohydrodynamic characteristics of two-phase flow in a heated capillary. Int J Multiphase Flow 26:1063–1093

    Article  MATH  Google Scholar 

  • Peles YP, Yarin LP, Hetsroni G (2001) Steady and unsteady flow in a heated capillary. Int J Multiphase Flow 27:577–598

    Article  MATH  Google Scholar 

  • Peng XF, Peterson GP (1995) The effect of thermofluid and geometrical parameters on convection of liquids through rectangular micro-channels. Int J Heat Mass Transfer 38:755–758

    Article  Google Scholar 

  • Peterson GP, Ma HB (1996) Theoretical analysis of the maximum heat transport in triangular grooves: a study of idealized et al micro-heat pipes. Trans ASME Heat Transfer 118:731–737

    Article  Google Scholar 

  • Peterson GP, Ha JM (1998) Capillary performance of evaporation flow in micro grooves: approximate analytical approach and experimental investigation. ASME J Heat Transfer 120:743–751

    Article  Google Scholar 

  • Potast M, Wayner PC (1972) Evaporation from a two-dimensional extended meniscus. Int J Heat Mass Transfer 15:1851–1863

    Article  Google Scholar 

  • Smirnov VI (1964) A course of higher mathematics, vol II. Pergamon, London

    Google Scholar 

  • Stephan PS, Busse CA (1992) Analysis of the heat transfer coefficient of grooved heat pipe evaporator walls. Int J Heat Mass Transfer 35:383–391

    Article  Google Scholar 

  • Tuckerman D (1984) Heat transfer micro structure for integrated circuits. Dissertation, Stanford University, Stanford

    Google Scholar 

  • Tuckerman DB, Pease RFW (1981) High-performance heat sinking for VLSI. IEEE Electron Devise Lett EDL-2:126–129

    Article  Google Scholar 

  • Wallis GB (1969) One-dimensional two-phase flow. McGraw-Hill, New York

    Google Scholar 

  • Wayner PC, Kao YK, LaCroix LV (1976) The interline heat transfer coefficient of an evaporating wetting film. Int J Heat Mass Transfer 19:487–492

    Article  Google Scholar 

  • Weisberg A, Bau HH, Zemel JN (1992) Analysis of micro-channels for integrated cooling. Int J Heat Mass Transfer 35:2465–2472

    Article  Google Scholar 

  • Weislogel MM, Lichter S (1998) Capillary flow in an interior corner. J Fluid Mech 373:349–378

    Article  MATH  MathSciNet  Google Scholar 

  • Wu PY, Little WA (1984) Measurement of the heat transfer characteristics of gas flow a fine channels heat exchangers used for microminiature refrigerators. Cryogenics 24:415–420

    Article  Google Scholar 

  • Xu X, Carey VP (1990) Film evaporation from a micro-grooved surface: an approximate heat transfer model and its comparison with experimental data. J Thermophys 4(4):512–520

    Article  Google Scholar 

  • Yarin LP, Ekelchik LA, Hetsroni G (2002) Two-phase laminar flow in a heated micro-channels. Int J Multiphase Flow 28:1589–1616

    Article  MATH  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Capillary Flow with a Distinct Interface. In: Fluid Flow, Heat Transfer and Boiling in Micro-Channels. Heat and Mass Transfer. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78755-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78755-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78754-9

  • Online ISBN: 978-3-540-78755-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics