Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Diagn Imaging))

Key Points

• The majority of bone tumours are detected using conventional radiographs.

• Occasionally occult lesions may be detected using more sensitive techniques such as bone scintigraphy and MR imaging.

• Careful analysis of the pattern of bone destruction, periosteal reaction and matrix mineralisation on radiographs allow for characterisation of many bone tumours.

• Additional factors that should be included in determining the likely diagnosis include the age of the patient, location of the tumour in bone and any history of a pre-existing bone abnormality, e. g. Paget’s disease.

• A multidisciplinary approach to diagnosis, which includes review of the imaging and any histological findings, is emphasised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Algra PR, Heimans JJ, Valk J, Nauta JJ, Lachniet M, Kooten van B (1991) Do metastases in vertebra begin in the body or the pedicles? Am J Roentgenol 158:1275−1279

    Google Scholar 

  • Alyas F, James SL, Davies AM, Saifuddin A (2007) The role of MR imaging in the diagnostic characterization of appendicular bone tumours and tumour-like conditions. Eur Radiol 17:2675−2686

    Article  PubMed  CAS  Google Scholar 

  • Ardran GM (1951) Bone destruction not demonstrable by radiography. Br J Radiol 24:107−109

    Article  PubMed  CAS  Google Scholar 

  • Assoun J, Richardi G, Railhac JJ (1994) Osteoid osteoma: MR imaging versus CT. Radiology 191:217−223

    PubMed  CAS  Google Scholar 

  • Beltran J, Herman LJ, Burk JM et al. (1988) Femoral head avascular necrosis: MR imaging with clinical−pathologic and radionuclide correlation. Radiology 166:215−220

    PubMed  CAS  Google Scholar 

  • Beltran J, Aarisi F, Bonmati LM, Rosenberg ZS et al. (1993) Eosinophilic granuloma: MRI manifestations. Skeletal Radiol 22:157−161

    Article  PubMed  CAS  Google Scholar 

  • Bloem JL, Kroon HM (1993) Imaging of bone and soft tissue tumors: osseous lesions. Radiol Clin N Am 31:261−278

    PubMed  CAS  Google Scholar 

  • Braak BPM ter, Vincken PWJ, van Erkel et al. (2007) Are radiographs needed when MR imaging is performed for non-acute knee symptoms in patients younger than 45 years of age? Skeletal Radiol 36:1129−1139

    Article  Google Scholar 

  • Brailsford JF (1946) Evaluation of the negative radiological report. The Practioner 157:200−205

    Google Scholar 

  • Brailsford JF (1949) The diagnosis of bone tumours. Lancet 26:973−981

    Article  Google Scholar 

  • Brown KT, Kattapuram SV, Rosenthal DI (1986) Computed tomography analysis of bone tumors: patterns of cortical destruction and soft tissue extension. Skeletal Radiol 15:448−451

    Article  PubMed  CAS  Google Scholar 

  • Campbell RSD, Grainger AJ, Mangham DC, Beggs I, Teh J, Davies AM (2003) Intraosseous lipoma: a report of 35 new cases and a review of the literature. Skeletal Radiol 32:209−222

    PubMed  CAS  Google Scholar 

  • Choi JA, Lee KH, Jun WS et al. (2003) Osseous metastasis from renal carcinoma: “flow-void” sign at MR imaging. Radiology 228:629−634

    Article  PubMed  Google Scholar 

  • Codman EA (1926) Registry of bone sarcoma. Surg Gynecol Obstet 42:381−393

    Google Scholar 

  • Davies AM, Cassar-Pullicino VN (1992) The incidence and significance of fluid-fluid levels on computed tomography of osseous lesions. Br J Radiol 65:193−198

    Article  PubMed  CAS  Google Scholar 

  • Davies AM, Pikoulas C, Griffiths J (1994) MRI of eosinophilic granuloma. Eur J Radiol 18:205−209

    Article  PubMed  CAS  Google Scholar 

  • Davies AM, Evans N, Mangham DC, Grimer RJ (2001) MR imaging of brown tumors with fluid-fluid levels: a report of three cases. Eur Radiol 11:1445−1449

    Article  PubMed  CAS  Google Scholar 

  • DeSantos LA, Edeiken BS (1985) Subtle early osteosarcoma. Skeletal Radiol 13:44−48

    Article  CAS  Google Scholar 

  • Doyle C (1890) The sign of four. Lippincott’s Magazine, February, London

    Google Scholar 

  • Edeiken J (1981) Roentgen diagnosis of diseases of bone. Williams and Wilkins, Baltimore, pp 8−32

    Google Scholar 

  • Edelstyn GA, Gillespie PJ, Grebbel FS (1967) The radiological demonstration of osseous metastases: experimental observations. Clin Radiol 18:158−162

    Article  PubMed  CAS  Google Scholar 

  • Folpe AL, Lyes RH, Sprouse JT et al. (2000) F-18 fluorodeoxyglucose positron emission tomography as a predictor of pathologic grade and other prognostic variables in bone and soft tissue sarcoma. Clin Cancer Res 6:1279−1287

    PubMed  CAS  Google Scholar 

  • Geirnaerdt MJA, Hogendoorn PCW, Bloem JL et al. (2000) Cartilaginous tumors: fast contrast-enhanced MR imaging. Radiology 214:539−546

    PubMed  CAS  Google Scholar 

  • Go RT, El Khoury GY, Wehbe MA (1980) Radionuclide bone image in growing and stable bone islands. Skeletal Radiol 5:15−18

    Article  PubMed  CAS  Google Scholar 

  • Grimer RJ, Sneath RS (1990) Diagnosing malignant bone tumors: editorial. J Bone Joint Surg Br 72:754−756

    PubMed  CAS  Google Scholar 

  • Hall FM, Goldberg RP, Davies JA et al. (1980) Scintigraphic assessment of bone islands. Radiology 135:737−742

    PubMed  CAS  Google Scholar 

  • Hudson TM, Hamlin DJ, Fitzsimmons JR (1985) Magnetic resonance imaging of fluid levels in an aneurysmal bone cyst and in anticoagulated human blood. Skeletal Radiol 3:267−270

    Article  Google Scholar 

  • James SLJ, Hughes RJ, Ali KE, Saifuddin A (2006) MRI of bone marrow oedema associated with focal bone lesions. Clin Radiol 61:1003−1009

    Article  PubMed  CAS  Google Scholar 

  • James SLJ, Panicek DM, Davies AM (2008) Bone marrow oedema associated with benign and malignant bone tumours. Eur J Radiol 67:11−21

    Article  PubMed  CAS  Google Scholar 

  • Kenan S, Abdelwahab IF, Klein MJ, Herman G, Lewis MM (1993) Lesions of juxtacortical origin (surface lesions of bone). Skeletal Radiol 22:337−357

    PubMed  CAS  Google Scholar 

  • Kenney PJ, Gilula LA, Murphy WA (1981) The use of computed tomography to distinguish osteochondroma and chondrosarcoma. Radiology 139:129−137

    PubMed  CAS  Google Scholar 

  • Kricun ME (1983) Radiographic evaluation of solitary bone lesions. Orthop Clin North Am 14:39−64

    PubMed  CAS  Google Scholar 

  • Kricun ME (1993) Imaging of bone tumors. Saunders, Philadelphia, pp 2−45

    Google Scholar 

  • Kroon HM, Bloem JL, Holscher HC et al. (1994) MR imaging of edema accompanying benign and malignant bone tumors. Skeletal Radiol 23:261−269

    Article  PubMed  CAS  Google Scholar 

  • Leung JC, Dalinka MK (2000) Magnetic resonance imaging in primary bone tumors. Semin Roentgenol 35:297−305

    Article  PubMed  CAS  Google Scholar 

  • Levine E, De Smet AA, Neff JR et al. (1984) Scintigraphic evaluation of giant cell tumor of bone. AJR 143:343−348

    PubMed  CAS  Google Scholar 

  • Levy JC, Temple HT, Mollabashy A, Sanders J, Kransdorf M (2005) The causes of pain in benign solitary enchondromas of the proximal humerus. Clin Orthop Relat Res 431:181−186

    Article  PubMed  Google Scholar 

  • Lodwick GS (1965a) A probabilistic approach to the diagnosis of bone tumors. Radiol Clin North Am 3:487−497

    CAS  Google Scholar 

  • Lodwick GS (1965b) A systematic approach to the Roentgen diagnosis of bone tumors. In: Tumors of bone and soft tissue: a collection of papers presented at the 8th Annual Clinical Conference on Cancer 1963. Year-Book Medical Publishers, Chicago, pp 49−68

    Google Scholar 

  • Lodwick GS (1966) Solitary malignant tumors of bone: the application of predictor variables in diagnosis. Semin Roentgenol 1:293−313

    Article  Google Scholar 

  • Lodwick GS, Wilson AJ, Farrell C, Virtama P, Dittrich F (1980a) Determining growth rates of focal lesions of bone from radiographs. Radiology 134:577−583

    CAS  Google Scholar 

  • Lodwick GS, Wilson AJ, Farrell C, Virtama P, Dittrich F (1980b) Estimating rate of growth in bone lesions: observer performance and error. Radiology 134:585−590

    CAS  Google Scholar 

  • Madewell JE, Ragsdale BD, Sweet DE (1981) Radiologic and pathologic analysis of solitary bone lesions. Part I: Internal margins. Radiol Clin North Am 19:715−748

    PubMed  CAS  Google Scholar 

  • Magid D (1993) Two-dimensional and three-dimensional computed tomographic imaging in musculoskeletal tumors. Radiol Clin N Am 31:425−447

    PubMed  CAS  Google Scholar 

  • Miller TT (2008) Bone tumors and tumor-like conditions: analysis with conventional radiography. Radiology 246:662−674

    Article  PubMed  Google Scholar 

  • Moreno A, Clemente J, Crespo C (1999) Pelvic insufficiency fractures in patients with pelvic irradiation. In J Radiat Oncol Biol Phys 44:61−66

    CAS  Google Scholar 

  • Moser RP, Madewell JE (1987) An approach to primary bone tumors. Radiol Clin North Am 25:1049−1093

    PubMed  Google Scholar 

  • Müller C, Huber W, Imhof H, Kainberger F (2005) Detektion von primär malignen intermediären Knochentumoren:Wertigkeit der Projektionsradiographie. Fortschr Röntgenstr 177:210−216

    Article  Google Scholar 

  • Mumber MP, Greven KM, Haygood TM (1997) Pelvic insufficiency fractures associated with radiation atrophy: clinical recognition and diagnostic evaluation. Skeletal Radiol 26:94−99

    Article  PubMed  CAS  Google Scholar 

  • Muscolo DL, Ayerza MA, Mokino A, Costa-Paz M, Aponte-Tinao LA (2003) Tumors about the knee misdiagnosed as athletic injuries. J Bone Joint Surg (Am) 85:1209−1214

    Google Scholar 

  • O’Donnell P, Saifuddin A (2004) The prevalence and diagnostic significance of fluid-fluid levels in focal lesions of bone. Skeletal Radiol 33:330−336

    Article  PubMed  Google Scholar 

  • Oxtoby JW, Davies AM (1996) MRI characteristics of chondroblastoma. Clin Radiol 5:22−26

    Article  Google Scholar 

  • Priolo F, Cerase A (1998) the current role of radiography in the assessment of skeletal tumors and tumor-like lesions. Eur J Radiol 27(Suppl 1):S77−S85

    PubMed  Google Scholar 

  • Ragsdale BD, Madewell JE, Sweet DE (1981) Radiologic and pathologic analysis of solitary bone lesions. Part II. Periosteal reaction. Radiol Clin North Am 19:749−783

    PubMed  CAS  Google Scholar 

  • Rapezzi C, Ferrar R, Branzi A (2005) White coats fingerprints: diagnostic reasoning in medicine and investigative methods of fictional detectives. Br Med J 331:1491−1494

    Article  Google Scholar 

  • Rechl H, Hof N, Gerdesmeier L (2001) Differential diagnosis of bone and soft tissue tumors by MRI. Orthopade 30:528−539

    Article  PubMed  CAS  Google Scholar 

  • Ries T (1983) Detection of osteoporotic sacral fractures with radionuclides. Radiology 146:783−785

    PubMed  CAS  Google Scholar 

  • Rosenberg ZS, Lev S, Schmahmann S, Steiner GC, Beltran J, Present D (1995) Osteosarcoma: subtle, rare, and misleading plain film features. AJR 165:1209−1214

    PubMed  CAS  Google Scholar 

  • Ryan PJ, Fogelman I (1997) Bone scintigraphy in metabolic bone disease. Semin Nucl Med 17:291−305

    Article  Google Scholar 

  • Seeger LL, Yao L, Eckardt JJ (1998) Surface lesions of bone. Radiology 206:17−33

    PubMed  CAS  Google Scholar 

  • Simpfendorfer CS, Ilaslan H, Davies AM, James SL, Obuchowski N, Sundaram M (2008) Does the presence of focal normal marrow fat signal within a tumor on MRI exclude malignancy? An analysis of 184 histologically proven tumors of the pelvis and appendicular skeleton. Skeletal Radiol 37:797−804

    Article  PubMed  CAS  Google Scholar 

  • Skeletal Lesions Interobserver Correlation Amongst Expert Diagnosticians (SLICED) Study Group (2007) Reliability of histopathologic and radiologic grading of cartilaginous neoplasms in long bones. J Bone Joint Surg (Am) 89:2113−2123

    Article  Google Scholar 

  • Strobel K, Hany TF, Exner GU (2006) PET/CT of a Brodie abscess. Clin Nucl Med 31:210

    Article  PubMed  Google Scholar 

  • Strobel K, Bode B, Lardinois D, Exner U (2007) PET positive fibrous dysplasia: a potentially misleading incidental finding in a patient with intimal sarcoma of the pulmonary artery. Skeletal Radiol 36(Suppl):S24−S28

    PubMed  Google Scholar 

  • Sundaram M, Khanna G, El-Khoury GY (2001) T1-weighted MR imaging for distinguishing large osteolysis of Paget’s disease from sarcomatous degeneration. Skeletal Radiol 30:378−383

    Article  PubMed  CAS  Google Scholar 

  • Sweet DE, Madewell JE, Ragsdale BD (1981) Radiologic and pathologic analysis of solitary bone lesions. Part III. Matrix patterns. Radiol Clin North Am 19:785−814

    PubMed  CAS  Google Scholar 

  • Teele RL, Griscom NT (1998) Letter: Aunt Minnie. Radiology 208:829−830

    Google Scholar 

  • Tsai JC, Dalinka MK, Fallon MD et al. (1995) Fluid-fluid level: a non-specific finding in tumors of bone and soft tissue. Radiology 175:779−782

    Google Scholar 

  • Van der Linden YM, Dijkstra PDS, Kroon HM, Lok JJ, Noordijk EM, Leer JWH, Marijnen CAM (2004) Comparative analysis of risk factors for pathological fracture with femoral metastases. J Bone Joint Surg (Br) 86B:566−573

    Google Scholar 

  • Van Dyck P, Vanhoenacker FM, Vogel J et al. (2006) Prevalence, extension and characteristics of fluid-fluid levels in bone and soft tissue tumors. Eur Radiol 16:2644−2651

    Article  PubMed  Google Scholar 

  • Walden MJ, Murphey MD, Vidal JA (2008) Incidental enchondromas of the knee. AJR 190:1611−1615

    Article  PubMed  Google Scholar 

  • Watanabe N, Inaoka T, Shuke N et al. (2007) Acute rhabdomyolysis of the soleus muscle induced by a lightning strike: magnetic resonance and scintigraphic findings. Skeletal Radiol 36:671−675

    Article  PubMed  Google Scholar 

  • Wellman HN, Schauwecker D, Robb JA et al. (1977) Skeletal scintimaging and radiography in the diagnosis and management of Paget’s disease. Clin Orthop Relat Res 127:55−62

    PubMed  Google Scholar 

  • Woertler K (2003) Benign bone tumors and tumor-like lesions: value of cross-sectional imaging. Eur Radiol 13:1820−1835

    Article  PubMed  Google Scholar 

  • Woertler K, Lindner N, Gosher G, Brinkschmidt C, Heindel W (2000) Osteochondroma: MR imaging of tumor-related complications. Eur Radiol 10:832−884

    Article  PubMed  CAS  Google Scholar 

  • Wurtz LD, Peabody TD, Simon MA (1999) Delay in the diagnosis and treatment of primary sarcoma of the pelvis. J Bone Joint Surg (Am) 81A:317−325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Davies, A., Cassar-Pullicino, V. (2009). Principles of Detection and Diagnosis. In: Davies, A., Sundaram, M., James, S. (eds) Imaging of Bone Tumors and Tumor-Like Lesions. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77984-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77984-1_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77982-7

  • Online ISBN: 978-3-540-77984-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics