Skip to main content

M6 Heat Transfer from a Wall to Stagnant and Mechanically Agitated Beds

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

Granular and powdery products are often treated in contact equipment of various geometrical configurations (tray, paddle, drum, etc.). Heat transfer from the wall of the apparatus to the bed, or vice versa, is essential for this kind of processing and will, therefore, be discussed in the present chapter. Immersed surfaces such as the shaft of stirring devices may be used additionally to the apparatus wall for heating or cooling. Modelling of heat transfer will be presented in Sects. 25 on the basis of a model that considers the bed of particles as one continuous phase. This is usually called the penetration model. The heat exchanged between the wall and the bed may be used to just change bed temperature. Alternatively, a part of the supplied heat may be consumed for phase change or chemical reaction in the interior of the bed. These two cases will be distinguished, describing the former as heat transfer to beds without latent sinks (Sect. 2) and the latter as heat...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

9 Bibliography

  1. Wunschmann J (1974) Wärmeübertragung von beheizten Flächen an bewegte Schüttungen bei Normaldruck und im Vakuum. Diss., Univ. Karlsruhe

    Google Scholar 

  2. Schlünder E-U (1984) Heat transfer to packed and stirred beds from the surface of immersed bodies. Chem Eng Process 18:31–53

    Article  Google Scholar 

  3. Schlünder E-U, Mollekopf N (1984) Vacuum contact drying of free flowing mechanically agitated particulate material. Chem Eng Process 18:93–111

    Article  Google Scholar 

  4. Abramowitz M (ed) (1965) Handbook of mathematical functions. Dover Publications, New York

    Google Scholar 

  5. Mollekopf N (1983) Wärmeübergang an mechanisch durchmischtes Schüttgut mit Wärmesenken in Kontaktapparaten. Diss., Univ. Karlsruhe

    Google Scholar 

  6. Tsotsas E, Schlünder E-U (1986) Contact drying of mechanically agitated particulate material in the presence of inert gas. Chem Eng Process 20:277–285

    Article  Google Scholar 

  7. Martin H (1980) Wärme- und Stoffübertragung in der Wirbelschicht. Chem Ing Tech 52:199–209

    Article  Google Scholar 

  8. Krischer O (1956) Die wissenschaftlichen Grundlagen der Trocknungstechnik, 1st edn. Springer, Berlin

    Book  Google Scholar 

  9. Schlünder E-U, Tsotsas E (1988) Wärmeübertragung in Festbetten, durchmischten Schüttgütern und Wirbelschichten, 1st edn. Thieme, Stuttgart

    Google Scholar 

  10. Blumberg W, Schlünder E-U (1995) Thermal conductivity of packed beds consisting of porous particles wetted with binary mixtures. Chem Eng Process 34:339–346

    Article  Google Scholar 

  11. Tsotsas E (2007) Modeling of contact dryers. Drying Technol J 25:1377–1391

    Article  Google Scholar 

  12. Guderian J, Köneke D, Weinsprach P-M (1991) Heat transfer to trickling granular materials. Chem Eng Process 30:157–174

    Article  Google Scholar 

  13. Dittler A, Bamberger T, Gehrmann D, Schlünder E-U (1997) Measurement and simulation of the vacuum contact drying of pastes in a LIST-type kneader dryer. Chem Eng Process 36:301–307

    Article  Google Scholar 

  14. Tsotsas E, Schlünder E-U (1987) Vacuum contact drying of mechanically agitated beds: the influence of hygroscopic behaviour on the drying rate curve. Chem Eng Process 21:199–208

    Article  Google Scholar 

  15. Tsotsas E (1985) Über den Einfluß der Dispersität und der Hygroskopizität auf den Trocknungsverlauf bei der Vakuum- Kontakttrocknung rieselfähiger Trocknungsgüter. Diss., Univ. Karlsruhe.

    Google Scholar 

  16. Michaud A, Peczalski R, Andrieu J (2008) Modeling of vacuum contact drying of crystalline powders packed beds. Chem Eng Process 47:722–730

    Article  Google Scholar 

  17. Michaud A, Peczalski R, Andrieu J (2007) Experimental study and modelling of crystalline powders vacuum contact drying with intermittent stirring. Drying Technol J 25:1163–1173

    Article  Google Scholar 

  18. Kohout M, Collier AP, Stepanek F (2006) Mathematical modelling of solvent drying from a static particle bed. Chem Eng Sci 61:3647–3685

    Article  Google Scholar 

  19. Tsotsas E, Schlünder E-U (1986) Vacuum contact drying of free flowing mechanically agitated multigranular packings. Chem Eng Process 20:339–349

    Article  Google Scholar 

  20. Blumberg W (1995) Selektive Konvektionstrocknung im Drehrohr. Fortschr Ber VDI, Ser. 3, No. 384. VDI-Verlag, Düsseldorf (Diss., Univ. Karlsruhe)

    Google Scholar 

  21. Gevaudan A, Andrieu J (1991) Contact drying modelling of agitated porous media beads. Chem Eng Process 30:31–37

    Article  Google Scholar 

  22. Heimann F (1988) Über die Vakuumkontakttrocknung von mechanisch durchmischtem, rieselfähigem Schüttgut, das mit einem binären Gemisch befeuchtet ist. Fortschr Ber VDI, Ser. 3, No. 152. VDI-Verlag, Düsseldorf (Diss., Univ. Karlsruhe)

    Google Scholar 

  23. Riede T, Schlünder E-U (1990) Selective evaporation of a binary mixture into dry or humidified air. Chem Eng Process 27:83–93

    Article  Google Scholar 

  24. Knebel T, Schlünder E-U (1995) Retention of volatiles in contact drying combined with membrane separation. Chem Eng Process 34:219–227

    Article  Google Scholar 

  25. Barresi AA, Pisano R, Fissore D, Rasetto V, Velardi SA, Vallan A, Parvis M, Galan M (2009) Monitoring of the primary drying of a lyophilization process in vials. Chem Eng Process 48:408–423

    Article  Google Scholar 

  26. Kwapinska M, Saage G, Tsotsas E (2006) Mixing of particles in rotary drums: a comparison of discrete element simulations with experimental results and penetration models for thermal processes. Powder Technol 161:69–78

    Article  Google Scholar 

  27. Kwapinska M, Saage G, Tsotsas E (2008) Continuous versus discrete modelling of heat transfer to agitated beds. Powder Technol 181:331–342

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Tsotsas, E. (2010). M6 Heat Transfer from a Wall to Stagnant and Mechanically Agitated Beds. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_99

Download citation

Publish with us

Policies and ethics