Skip to main content

M10 Heat Transfer and Momentum Flux in Rarefied Gases

  • Reference work entry
  • First Online:
VDI Heat Atlas

Part of the book series: VDI-Buch ((VDI-BUCH))

1 Introduction

Footnote 1Within the kinetic theory of gases heat transfer and flow processes of rarefied gases are described by the Boltzmann equation [114]. To this nonlinear integro-differential equation belong two characteristic lengths, namely the mean free path l of the molecules and a macroscopic length L characteristic for the body dimensions. The ratio of these quantities gives the Knudsen number

$${\rm Kn} = l/L$$
((1))

as dimensionless parameter. At normal density, the mean free path is of the order of 10−7 m. In many technical applications, it can therefore be assumed that one has for the Knudsen number \({\rm Kn} \ll 1\). The term “rarefied gases” means that l is not negligibly small in comparison with L. This condition is often fulfilled at low density of the surrounding air, as for example in the higher layers of the earth's atmosphere. Similar conditions occur in vacuum or space technology. It should be mentioned that large values of the Knudsen number occur at normal...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 849.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Deceased

6 Bibliography

  1. Waldmann L (1958) Transporterscheinungen in Gasen von mittlerem Druck. In: Flügge S Handbuch der Physik Band XII. Springer-Verlag, Berlin

    Google Scholar 

  2. Bird GA (1994) Molecular gas dynamics and the direct simulation of gas flows. Clarendon Press, Oxford

    Google Scholar 

  3. Cercignani C (1969) Mathematical methods in kinetic theory. Plenum Press, New York

    Book  MATH  Google Scholar 

  4. Cercignani C (1975) Theory and applications of the Boltzmann equation. Elsevier, New York

    MATH  Google Scholar 

  5. Chapman S, Cowling TG (1960) The mathematical theory of non-uniform gases, 2nd edn. University Press, Cambridge

    MATH  Google Scholar 

  6. Hirschfelder JO, Curtiss CF, Bird RB (1963) Molecular theory of gases and liquids, 2nd edn. John Wiley & Sons, New York

    MATH  Google Scholar 

  7. Frohn A (1988) Einführung in die Kinetische Gastheorie, AULA-Verl, Aufl. Wiesbaden.

    Google Scholar 

  8. Grad H (1958) Principles of the kinetic theory of gases. In: Flügge S Handbuch der Physik Band XII. Springer-Verlag, Berlin

    Google Scholar 

  9. Jeans J (1954) The dynamical theory of gases, 4th edn. Dover Publications, New York

    MATH  Google Scholar 

  10. Jeans J (1962) An introduction to the kinetic theory of gases. University Press, Cambridge

    MATH  Google Scholar 

  11. Kennard EH (1938) Kinetic theory of gases, 1st edn. McGraw-Hill Book Company, New York

    Google Scholar 

  12. Loeb LB (1961) The kinetic theory of gases, 3rd edn. Dover Publications, New-York

    Google Scholar 

  13. Present RD (1958) Kinetic theory of gases, 1st edn. McGraw-Hill Book Company, New York

    Google Scholar 

  14. Smolderen JJ (1965) The evolution of the equations of gas flow at low density. In:Küchemann D, Sterne LHG Progress in aeronautical sciences, vol 6. Pergamon Press, Oxford

    Google Scholar 

  15. Dushman S, Lafferty JM (1962) Scientific foundation of vacuum technique. John Wiley & Sons Inc., New York

    Google Scholar 

  16. Wutz M, Adam H, Walcher W (1988) Theorie und Praxis der Vakuumtechnik, Vieweg-Verlag, Aufl. Braunschweig.

    Book  Google Scholar 

  17. Lavin ML, Haviland, JK (1962) Application of a moment method to heat transfer in rarefied gases. Phys Fluids 5:274–279

    Article  MathSciNet  Google Scholar 

  18. Lees L (1965) Kinetic theory description of rarefied gas flow. J Soc Ind Appl Math 13:278–311

    Article  MathSciNet  Google Scholar 

  19. Zhong X, Koura K (1995) Comparison of solutions of the Burnett equations, Navier-Stokes equations, and DSMC for Couette flow. In: Harvey J Lord G Rarefied Gas Dynamics. Oxford University Press, Oxford, pp 354–360

    Google Scholar 

  20. Inamuro T, Sturtevant B (1991) Heat transfer in a discrete velocity gas. In: Beylich AE Rarefied gas dynamics. VCH Verlagsgesellschaft GmbH, Weinheim, pp 854–861

    Google Scholar 

  21. Usami M, Kyogoku H, Kato S (1991) Monte Carlo direct simulation of heat transfer through a rarefied gas. In: Beylich AE (ed) Rarefied gas dynamics.VCH Verlagsgesellschaft GmbH, Weinheim, pp 854–861

    Google Scholar 

  22. Bird GA (1995) The search for solutions in rarefied gas dynamics. In: Harvey J, Lord G Rarefied gas dynamics. Oxford University Press, Oxford, pp 753–772

    Google Scholar 

  23. Carslaw HS, Jaeger JC (1959) Conduction of heat in solids, 2nd edn. Clarendon Press, Oxford

    MATH  Google Scholar 

  24. Holman JP (1981) Heat transfer. MacGraw-Hill International Book Company, Auckland

    Google Scholar 

  25. Eckert ERG, Drake RM (1972) Analysis of heat and mass transfer. McGraw-Hill Book Company, NewYork

    MATH  Google Scholar 

  26. Sherman FS (1963) A survey of experimental results and methods for the transition regime of rarefied gas dynamics. In: Lauermann JA Rarefied gas dynamics, vol 2. Academic Press, New York, pp 228–260

    Google Scholar 

  27. Saxena SC, Joshi RK (1989) Thermal accommodation and adsorption coefficients of gases. In: Ho CY CINDAS data series on material properties, vols 2. Hemisphere Publishing Corp., New York

    Google Scholar 

  28. Wachmann HY (1962) The thermal accommodation coefficient: a critical survey. Am Rocket Soc J 32:2–12

    Google Scholar 

  29. Pazooki N, Loyalka SK (1985) Heat transfer in a rarefied polyatomic gas – I. Plane parallel plates. Int J Heat Mass Transfer 28:2019–2027

    Article  MATH  Google Scholar 

  30. Siewert CE (2003) The linearized Boltzmann equation: a concise and accurate solution of the temperature-jump problem. J Quant Spectrosc Ra 77:417–433

    Article  Google Scholar 

  31. Arya G, Hseueh-Chia C, Maginn EJ (2003) Molecular simulations of Knudsen wall-slip: effect of wall morphology. Mol Simulat 29:697−710

    Article  MATH  Google Scholar 

  32. Shen C, Fan J, Xie C (2003) Statistical simulation of rarefied gas flows in micro-channels. J Comput Phys 189:512−527

    Article  MATH  Google Scholar 

  33. Shinagawa H, Asai T, Sugiyama Y, Okuyama K (2002) An experimental and theoretical investigation of rarefied gas flows through circular tube of finite length. Chem Eng Sci 52:4027−4037

    Article  Google Scholar 

  34. Siewert CE (2003) Heat transfer and evaporation/condensation problems based on the linearized Boltzmann equation. Eur J Mech B: Fluids 22:391−409

    Article  MathSciNet  MATH  Google Scholar 

  35. Yeh BT, Frohn A (1973) Heat conduction in binary gas mixtures between concentric cylinders. Phys Fluids 16:801−805

    Article  MATH  Google Scholar 

  36. Yeh BT, Frohn A (1973) Heat conduction between parallel flat plates in binary gas mixtures. Phys Fluids 16:330−332

    Article  MATH  Google Scholar 

  37. Braun D, Frohn A (1976) Heat transfer in simple monatomic gases and in binary mixtures of monatomic gases. Int J Heat Mass Transfer 19:1329−1335

    Article  Google Scholar 

  38. Westerdorf M, Frohn A (1982) Measurements of conduction of heat in water vapour, nitrogen and mixtures of these gases in an extended temperature range. In: Grigull U (ed) Proceedings of the 17th international heat transfer Conference, Hemisphere Publ. Corp., vol 2, pp 99−104

    Google Scholar 

  39. Kosuge S, Aoki K, Takata S (2001) Heat transfer in a gas mixture between two parallel plates: finite-difference analysis of the Boltzmann equation. In: Bartel JJ, Gallis MA (ed) Rarefied gas dynamics. 22nd international symposium, American Institute of Physics. Sydney, Australia, pp 289–296

    Google Scholar 

  40. Lees L, Liu ChY (1962) Kinetic-theory description of conductive heat transfer from a fine wire. Phys Fluids 5:1137–1148

    Article  MathSciNet  Google Scholar 

  41. Yeh B-T (1971) Theoretische und experimentelle Untersuchung der Wärmeleitung in verdünnten binären Gasgemischen. RWTH AachenDiss.

    Google Scholar 

  42. Braun D (1976) Wärmetransport in Gasen bei großen Temperaturdifferenzen und beliebigen Knudsenzahlen. RWTH AachenDiss.

    Google Scholar 

  43. Westerdorf M (1985) Ein automatisiertes Messverfahren für die Untersuchung der Wärmeleitung in einem großen Knudsenzahlbereich. Univ. StuttgartDiss.

    Google Scholar 

  44. Hurlbut FC (1964) Note on conductive heat transfer from a fine wire. Phys Fluids 7:904–906

    Article  Google Scholar 

  45. Springer GS, Wan SF (1966) Note on the application of a moment method to heat conduction in rarefied gases between concentric spheres. AIAA J 4:441–1143

    Article  Google Scholar 

  46. Springer GS (1971) Heat transfer in rarefied gases. Adv Heat Transfer 7:163–218

    Article  Google Scholar 

  47. Dorrance WH (1962) Viscous hypersonic flow. McGraw-Hill Book Company, New York

    Google Scholar 

  48. Anderson JD Jr (1989) Hypersonic and high temperature gas dynamics. McGraw-Hill Book Company, New York

    Google Scholar 

  49. Park C (1990) Nonequilibrium hypersonic aerothermodynamics. John Wiley & Sons, New York

    Google Scholar 

  50. Knobling K (1972) Kenngrößen in der Gasdynamik. VDI-Z 114:1206–1210

    Google Scholar 

  51. Liu ChY Lees L (1961) Kinetic theory description of plane compressible Couette flow. Adv Appl Mech (Suppl 1), Rarefied Gas Dynamics. Academic Press, New York, pp 391–428

    Google Scholar 

  52. Sharipov FM, Seleznev VD (1994) Rarefied gas flow through a long tube at any pressure ratio. J Vac Sci Technol A 12:2933–2935

    Article  Google Scholar 

  53. Knudsen M (1909) Die Gesetze der Molekularströmung und der inneren Reibungsströmung der Gase durch Röhren. Ann Phys 4:75–130

    Article  MATH  Google Scholar 

  54. Lang H, Loyalka SK (1984) Some analytical results for thermal transpiration and the mechanocaloric effect in a cylindrical tube. Phys Fluids 27:1616–1619

    Article  MATH  Google Scholar 

  55. Loyalka SK, Hamoodi SA (1990) Poiseuille flow of a rarefied gas in a cylindrical tube: solution of linearized Boltzmann equation. Phys Fluids A 2:2061–2065

    Article  MATH  Google Scholar 

  56. Cercignani C, Sernagiotto F (1966) Cylindrical poiseuille flow of a rarefied gas. Phys Fluids 9:40–44

    Article  Google Scholar 

  57. Lo SS, Loyalka SK, Storvik TS (1983) Rarefied gas flow in a cylindrical annulus. J Vac Sci Technol A 1:1539–1548

    Article  Google Scholar 

  58. Lo SS, Loyalka SK (1982) An efficient computation of near-continuum rarefied gas flows. J Appl Math Phys (ZAMP) 33:419–424

    Article  MATH  Google Scholar 

  59. Sparrow EM Lin SH (1962) Laminar heat transfer in tubes under slip-flow conditions. J Heat Transfer 84:363–369

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag

About this entry

Cite this entry

Frohn, A., Roth, N., Anders†, K. (2010). M10 Heat Transfer and Momentum Flux in Rarefied Gases. In: VDI Heat Atlas. VDI-Buch. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77877-6_103

Download citation

Publish with us

Policies and ethics