Skip to main content

Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology

Abstract:

Short-chain fatty acids (SCFA) are formed from the fermentation of sugars by intestinal bacteria. Acetate is the most abundant SCFA, with lower amounts of propionate and butyrate formed. Propionate and butyrate are also formed from the products of carbohydrate fermentation by other bacteria, for example from lactate and acetate. SCFA play a role in regulating transit of digesta through the intestine, and butyrate formation is thought to be beneficial to health because butyrate decreases the risk of colon cancer. Major butyrate-producing species are among the most abundant present in the colon, including Roseburia and Faecalibacterium spp. Metabolism of longer-chain fatty acids occurs mainly by hydration or hydrogenation of unsaturated fatty acids. Hydroxystearic acids are formed in the intestine, particularly under disease conditions. Metabolism of linoleic acid results in the formation of conjugated linoleic acids (CLA) by several species, including Roseburia hominis and Roseburia inulinovorans. Enhancement of intestinal CLA formation, possibly using probiotics, may be useful in preventing or treating inflammatory bowel disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bassaganya-Riera J, Hontecillus R, Beitz DC (2002) Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 21: 451–459.

    Article  PubMed  CAS  Google Scholar 

  • Bassaganya-Riera J, Reynolds K, Martino-Catt S, Cui Y, Hennighausen L, Gonzalez F, Rohrer J, Benninghoff AU, Hontecillas R (2004) Activation of PPAR gamma and delta by conjugated linoleic acid mediates protection from experimental inflammatory bowel disease. Gastroenterology 127: 777–791.

    Article  PubMed  CAS  Google Scholar 

  • Bauman DE, Lock AL, Corl BA, Ip C, Salter AM, Parodi PM (2005) Milk fatty acids and human health: Potential role of conjugated linoleic acid and trans fatty acids. In Ruminant Physiology: Digestion, Metabolism and Impact of Nutrition on Gene Expression, Immunology and Stress. K Serjrsen, T Hvelplund, and MO Nielsen (eds.). The Netherlands: Wageningen Academic Publishers, pp. 529–561.

    Google Scholar 

  • Belenguer A, Duncan SH, Holtrop G, Anderson SE, Lobley GE, Flint HJ (2007) Impact of pH on lactate formation and utilization by human fecal microbial communities. Appl Environ Microbiol 73: 6526–6533.

    Article  PubMed  CAS  Google Scholar 

  • Belury MA (2002) Dietary conjugated linoleic acid in health: Physiological effects and mechanisms of action. Annu Rev Nutr 22: 505–531.

    Article  PubMed  CAS  Google Scholar 

  • Bergman NE (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70: 567–590.

    PubMed  CAS  Google Scholar 

  • Bonanome A, Grundy SM (1988) Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. N Engl J Med 318: 1244–1248.

    Article  PubMed  CAS  Google Scholar 

  • Chanoine JP, Hampl S, Jensen C, Boldrin M, Hauptman J (2005). Effect of orlistat on weight and body composition in obese adolescents Ð a randomized controlled trial. JAMA 293: 2873–2883.

    Article  PubMed  CAS  Google Scholar 

  • Cherbut C (2003) Motor effects of short-chain fatty acids and lactate in the gastrointestinal tract. Proc Nutr Soc 62: 95–99.

    Article  PubMed  CAS  Google Scholar 

  • Coakley M, Ross RP, Nordgren M, Fitzgerald G, Devery R, Stanton C (2003) Conjugated linoleic acid biosynthesis by human-derived Bifidobacterium species. J Appl Microbiol 94: 138–145.

    Article  PubMed  CAS  Google Scholar 

  • Counotte GHM, Prins RA, Janssen RHAM, deBie MJA (1981) Role of Megasphaera elsdenii in the fermentation of dl-[2Ð13C]lactate in the rumen of dairy cattle. Appl Environ Microbiol 42: 649–655.

    PubMed  CAS  Google Scholar 

  • Cummings JH, Pomare EW, Branch WJ, Naylor CP, Macfarlane GT (1987) Short chain fatty acids in the human large intestine, portal, hepatic and venous blood. Gut 28: 1221–1227.

    Article  PubMed  CAS  Google Scholar 

  • Daly K, Shirazi-Beechey SP (2006) Microarray analysis of butyrate regulated genes in colonic epithelial cells. DNA Cell Biol 25: 49–62.

    Article  PubMed  CAS  Google Scholar 

  • Devillard E, McIntosh FM, Duncan SM, Wallace RJ (2007) Metabolism of linoleic acid by human gut bacteria: Different routes for biosynthesis of conjugated linoleic acid. J Bacteriol 189: 2566–2570.

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Aminov RI, Scott KP, Louis P, Stanton TB, Flint HJ (2006) Proposal of Roseburia faecis sp. nov., Roseburia hominis sp. nov. and Roseburia inulinivorans sp. nov., based on isolates from human faeces. Int J Syst Evol Microbiol 56: 2437–2441.

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002) Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68: 5186–5190.

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Holtrop G, Lobley GE, Calder AG, Stewart CS, Flint HJ (2004a) Contribution of acetate to butyrate formation by human faecal bacteria. Br J Nutr 91: 915–923.

    Article  PubMed  CAS  Google Scholar 

  • Duncan SH, Louis P, Flint HJ (2004b) Lactate-utilizing bacteria, isolated from human feces, that produce butyrate as a major fermentation product. Appl Environ Microbiol 70: 5810–5817.

    Article  PubMed  CAS  Google Scholar 

  • Eyssen H, Parmentier G (1974) Biohydrogenation of sterols and fatty acids by the intestinal microflora. Am J Clin Nutr 27: 1329–1340.

    PubMed  CAS  Google Scholar 

  • Falony G, Vlachou A, Verbrugghe K, De Vuyst L (2006) Cross-feeding between Bifidobacterium longum BB536 and acetate-converting, butyrate-producing colon bacteria during growth on oligofructose. Appl Environ Microbiol 72: 7835–7841.

    Article  PubMed  CAS  Google Scholar 

  • Flint HJ (2006) Prokaryote diversity in the human GI tract. In Prokaryotic diversity: Mechanisms and significance. 66, NA Logan, HM Lappin-Scott, PCF Oyston (eds.). Cambridge University Press, Cambridge, pp 65–90.

    Chapter  Google Scholar 

  • Flint HJ, Bayer EA, Rincon MT, Lamed R, White BA (2008) Polysaccharide utilization by gut bacteria: Potential for new insights from genomic analysis. Nat Rev Microbiol 6: 121–131.

    Article  PubMed  CAS  Google Scholar 

  • Gibson SAW, Mcfarlan C, Hay S, Macfarlane GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microbiol 55: 679–683.

    PubMed  CAS  Google Scholar 

  • Harfoot CG, Hazlewood GP (1997) Lipid metabolism in the rumen. In The Rumen Microbial Ecosystem. PN Hobson and CS Stewart (eds.). London: Chapman & Hall, pp. 382–426.

    Google Scholar 

  • Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ (2008) Review article: The role of butyrate on colonic function. Aliment Pharmacol Therap 27: 104–119.

    Article  CAS  Google Scholar 

  • Hauptman J, Lucas C, Boldrin MN, Collins H, Segal KR (2000) Orlistat in the long-term treatment of obesity in primary care settings. Arch Family Med 9: 160–167.

    Article  CAS  Google Scholar 

  • Hove H, Holtug K, Jeppesen PB, Mortensen PB (1995) Butyrate absorption and lactate secretion in ulcerative colitis. Dis Colon Rectum 38: 519–525.

    Article  PubMed  CAS  Google Scholar 

  • Hove H, Mortensen PB (1995) Influence of intestinal inflammation (IBD) and small and large bowel length on fecal short-chain fatty acids and lactate. Dig Dis Sci 40: 1372–1380.

    Article  PubMed  CAS  Google Scholar 

  • Hove H, Nordgaard-Andersen I, Mortensen PB (1994) Faecal dl-lactate concentration in 100 gastrointestinal patients. Scand J Gastroenterol 29: 255–259.

    Article  PubMed  CAS  Google Scholar 

  • Howard FAC, Henderson C (1999) Hydrogenation of polyunsaturated fatty acids by human colonic bacteria. Lett Appl Microbiol 29: 193–196.

    Article  PubMed  CAS  Google Scholar 

  • James AT, Webb JPW, Kellock TD (1961) The occurrence of unusual fatty acids in faecal lipids from human beings with normal and abnormal fat absorption. Biochem J 78: 333–339.

    PubMed  CAS  Google Scholar 

  • Kamlage B, Hartmann L, Gruhl B, Blaut M (1999) Intestinal microorganisms do not supply associated gnotobiotic rats with conjugated linoleic acid. J Nutr 129: 2212–2217.

    PubMed  CAS  Google Scholar 

  • Kamlage B, Hartmann L, Gruhl B, Blaut M (2000) Linoleic acid conjugation by human intestinal microorganisms is inhibited by glucose and other substrates in vitro and in gnotobiotic rats. J Nutr 130: 2036–2039.

    PubMed  CAS  Google Scholar 

  • Kemp MQ, Jeffy BD, Romagnolo DF (2003) Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: Effects on the expression of G1-restriction points in breast and colon cancer cells. J Nutr 133: 3670–3677.

    PubMed  CAS  Google Scholar 

  • Khedkar CD, Ouwehand AC (2006) Modifying the gastrointestinal microbiota with probiotics. In Gastrointestinal Microbiology. A Ouwehand and EE Vaughan (eds.) New York: Taylor & Francis Ltd, pp. 315–333.

    Google Scholar 

  • Kim YS, Spritz N (1968) Metabolism of hydroxy fatty acids in dogs with steatorrhea secondary to experimentally produced intestinal blind loops. J Lipid Res 9: 487–491.

    PubMed  CAS  Google Scholar 

  • Louis P, Duncan SH, McCrae SI, Millar J, Jackson MS, Flint HJ (2004) Restricted distribution of the butyrate kinase pathway among butyrate-producing bacteria from the human colon. J Bacteriol 186: 2099–2106.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane GT, Gibson GR (1995) Microbiological aspects of the production of short-chain fatty acids in the large bowel. In Physiological and Chemical Aspects of Short-Chain Fatty Acids. JH Cummings, JL Rombeau, and T Sakata (eds.). Cambridge: Cambridge University Press, pp. 87–105.

    Google Scholar 

  • Macfarlane GT, Gibson GR (1997) Carbohydrate fermentation, energy transduction and gas metabolism in the human large intestine. In Gastrointestinal Microbiology, Vol. 1: Gastrointestinal Ecosystems and Fermentations. RI Mackie and BA White (eds.). New York: Chapman & Hall, pp. 269–318.

    Google Scholar 

  • Macfarlane GT, Macfarlane S, Gibson GR (1998) Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microb Ecol 35: 180–187.

    Article  PubMed  CAS  Google Scholar 

  • Macfarlane S, Macfarlane GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62: 67–72.

    Article  PubMed  CAS  Google Scholar 

  • Maia MRG, Chaudhary LC, Figueres L, Wallace RJ (2007) Metabolism of polyunsaturated fatty acids and their toxicity to the microflora of the rumen. Antonie van Leeuwenhoek 91: 303–314.

    Article  PubMed  CAS  Google Scholar 

  • Malhotra SL (1982) Faecal urobilinogen levels and pH of stools in population groups with different incidence of cancer of the colon, and their possible role in aetiology. J R Soc Med 75: 709–714.

    PubMed  CAS  Google Scholar 

  • Martin HM, Rhodes JM (2000) Bacteria and inflammatory bowel disease. Curr Opin Inflamm Dis 13: 503–509.

    Article  CAS  Google Scholar 

  • McIntosh FM, Shingfield KJ, Devillard E, Russell WR, Wallace RJ (2009) Mechanism of conjugated linoleic acid and vaccenic acid formation in human fecal suspensions and pure cultures of intestinal bacteria. Microbiology 155: 285–294.

    Google Scholar 

  • Miller A, McGrath E, Stanton C, Devery R (2003) Vaccenic acid (t11–18:1) is converted to c9,t11-CLA in MCF-7 and SW480 cancer cells. Lipids 38: 623–632.

    Article  PubMed  CAS  Google Scholar 

  • Mosley EE, McGuire MK, Williams JE, McGuire MA (2006) cis-9,trans-11 Conjugated linoleic acid is synthesized from vaccenic acid in lactating women. J Nutr 136: 2297–2301.

    PubMed  CAS  Google Scholar 

  • Nichenametla SN, South EH, Exon JH (2004) Interaction of conjugated linoleic acid, sphingomyelin, and butyrate on formation of colonic aberrant crypt foci and immune function in rats. J Toxicol Environ Health A 67: 469–481.

    Article  PubMed  CAS  Google Scholar 

  • O'Connor EB, Barrett E, Fitzgerald G, Hill C, Stanton C, Ross RP (2005) Production of vitamins, exopolysaccharides and bacteriocins by probiotic bacteria. In Probiotic Dairy Products. A Tamine (ed.). Oxford: Blackwell Publishing Ltd, pp. 167–194.

    Google Scholar 

  • Ogawa J, Kishino S, Ando A, Sugimoto S, Mihara K, Shimizu S (2005) Production of conjugated fatty acids by lactic acid bacteria. J Biosci Bioeng 100: 355–364.

    Article  PubMed  CAS  Google Scholar 

  • Ohashi Y, Igarashi T, Kumazawa F, Fujisawa T (2007) Analysis of acetogenic bacteria in human feces with formyltetrahydrofolate synthetase sequences. Biosci Microflora 26: 37–40.

    CAS  Google Scholar 

  • Paillard D, McKain N, Chaudhary LC, Walker ND, Pizette F, Koppova I, McEwan NR, Kopecny J, Vercoe PE, Louis P, Wallace RJ (2006) Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen. Antonie van Leeuwenhoek 91: 417–422.

    Article  PubMed  Google Scholar 

  • Pariza MW (2004) Perspective on the safety and effectiveness of conjugated linoleic acid. Am J Clin Nutr 79: 1132S–1136S.

    PubMed  CAS  Google Scholar 

  • Pearson JR (1973) Alteration of dietary fat by human intestinal bacteria. Proc Nutr Soc 32: 8A–9A.

    PubMed  CAS  Google Scholar 

  • Polan CE, McNeill JJ, Tove SB (1964) Biohydrogenation of unsaturated fatty acids by rumen bacteria. J Bacteriol 88: 1056–1064.

    PubMed  CAS  Google Scholar 

  • Pouteau E, Ngyuen P, Ballèvre O, Krempf M (2003) Production rates and metabolism of short-chain fatty acids in the colon and whole body using stable isotopes. Proc Nutr Soc 62: 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Rhee SK, Kayani AJ, Ciszek A, Brenna JT (1997) Desaturation and interconversion of dietary stearic and palmitic acids in human plasma and lipoproteins. Am J Clin Nutr 65: 451–458.

    PubMed  CAS  Google Scholar 

  • Robert C, Chassard C, Lawson PA, Bernalier-Donadille A (2007) Bacteroides cellulosilyticus sp. nov., a cellulolytic bacterium from the human gut microbial community. Int J Syst Evol Microbiol 57: 1516–1520.

    Article  PubMed  Google Scholar 

  • Roediger WE (1980) Role of anaerobic bacteria in the metabolic welfare of the colonic mucosa in man. Gut 21: 793–798.

    Article  PubMed  CAS  Google Scholar 

  • Roediger WE (1990) The starved colon – diminished mucosal nutrition, diminished absorption, and colitis. Dis Colon Rectum 33: 858–862.

    Article  PubMed  CAS  Google Scholar 

  • Russell JB, Wallace RJ (1997) Energy yielding and consuming reactions. In The Rumen Microbial Ecosystem. PN Hobson and CS Stewart (eds.). London: Chapman & Hall, pp. 185–215.

    Google Scholar 

  • SACN(2007) Update on trans Fatty Acids and Health, Position statement by the Scientific Advisory Committee on Nutrition. London: TSO (The Stationary Office).

    Google Scholar 

  • Salminen S, Bouley C, Boutron-Ruault MC, Cummings JH, Franck A, Gibson GR, Isolauri E, Moreau MC, Roberfroid M, Rowland I (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80(Suppl. 1): S147–S171.

    Article  PubMed  CAS  Google Scholar 

  • Thomas PJ (1972) Identification of some enteric bacteria which convert oleic acid to hydroxystearic acid in vitro. Gastroenterology 62: 430–435.

    PubMed  CAS  Google Scholar 

  • Tiruppathi K, Balasubramanian KA, Hill PG, Mathan VI (1983) Faecal free fatty acids in tropical sprue and their possible role in the production of diarrhoea by inhibition of ATPases. Gut 24: 300–305.

    Article  PubMed  CAS  Google Scholar 

  • Todesco T, Rao AV, Bosello O, Jenkins DJA (1991) Propionate lowers blood glucose and lipid metabolism in healthy subjects. Am J Clin Nutr 54: 860–865.

    PubMed  CAS  Google Scholar 

  • Tricon S, Yaqoob P (2006) Conjugated linoleic acid and human health: A critical evaluation of the evidence. Curr Opin Clin Nutr Metab Care 9: 105–110.

    Article  PubMed  CAS  Google Scholar 

  • Turpeinen AM, Mutanen M, Aro A, Salminen I, Basu S, Palmquist DL, Griinari JM (2002) Bioconversion of vaccenic acid to conjugated linoleic acid in humans. Am J Clin Nutr 76: 504–510.

    PubMed  CAS  Google Scholar 

  • van Nuenen MH, Venema K, van der Woude JC, Kuipers EJ (2004) The metabolic activity of fecal microbiota from healthy individuals and patients with inflammatory bowel disease. Dig Dis Sci 49: 485–491.

    Article  PubMed  Google Scholar 

  • Venter CS, Vorster HH, Cummings JH (1990) Effects of dietary propionate on carbohydrate and lipid metabolism in healthy volunteers. Am J Gastroenterol 85: 549–553.

    PubMed  CAS  Google Scholar 

  • Wahle KWJ, Heys SD, Rotondo D (2004) Conjugated linoleic acids: Are they beneficial or detrimental to health. Prog Lipid Res 43: 553–557.

    Article  PubMed  CAS  Google Scholar 

  • Walker ARP, Walker BF, Walker AJ (1986) Fecal pH, dietary fibre intake, and proneness to colon cancer in four South African populations. Br J Cancer 53: 489–495.

    Article  PubMed  CAS  Google Scholar 

  • Walker AW, Duncan SH, McWilliam Leitch EC, Child MW, Flint HJ (2005) pH and peptide supply can radically alter bacterial populations and short-chain fatty acid ratios within microbial communities from the human colon. Appl Environ Microbiol 71: 3692–3700.

    Article  PubMed  CAS  Google Scholar 

  • Wiggins HS, Pearson JR, Walker JG, Russell RI, Kellock TD (1974) Incidence and significance of faecal hydroxystearic acid in alimentary disease. Gut 15: 614–621.

    Article  PubMed  CAS  Google Scholar 

  • Williams EA, Coxhead JM, Mathers JC (2003) Anti-cancer effects of butyrate: Use of micro-array technology to investigate mechanisms. Proc Nutr Soc 62: 107–115.

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Miyamoto B, Shibata K, Valasek MA, Motoike T, Kedzierski RM, Yanagisawa M (2004) Short-chain fatty acids stimulate leptin production in adipocytes through the G protein-coupled receptor GPR41. Proc Natl Acad Sci USA 101: 1045–1050.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Hoyles, L., Wallace, R.J. (2010). Gastrointestinal Tract: Intestinal Fatty Acid Metabolism and Implications for Health. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_234

Download citation

Publish with us

Policies and ethics