Skip to main content

Evolving Enzymes for Biocatalysis

  • Reference work entry
Handbook of Hydrocarbon and Lipid Microbiology
  • 355 Accesses

Abstract:

This article covers concepts developed for the directed evolution of enzymes. The principle strategy is given in comparison to rational protein design followed by a description of the most prominent methods for creation of mutant libraries. Screening and selection strategies to identify the best hits in these libraries are presented followed by several assays developed for a range of enzyme classes. Finally, selected examples for the successful application of evolutionary methods to optimize biocatalysts are given.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,499.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adamczak M, Krishna SH (2004) Strategies for Improving enzymes for efficient biocatalysis. Food Technol Biotechnol 42: 251–264.

    CAS  Google Scholar 

  • Arnold FH, Georgiou G (eds.) (2003a) Directed Enzyme Evolution: Screening and Selection Methods, vol. 230. Totawa: Humana Press.

    Google Scholar 

  • Arnold FH, Georgiou G (eds.) (2003b) Directed Evolution Library Creation: Methods and Protocols, vol. 231. Totawa: Humana Press.

    Google Scholar 

  • Bartsch S, Kourist R, Bornscheuer UT (2008) Complete inversion of enantioselectivity towards acetylated tertiary alcohols by a double mutant of a Bacillus subtilis esterase. Angew Chem Int Ed 47: 1508–1511.

    Article  Google Scholar 

  • Baumann M, Stürmer R, Bornscheuer UT (2001) A high-throughput-screening method for the identification of active and enantioselective hydrolases. Angew Chem Int Ed 40: 4201–4204.

    Article  CAS  Google Scholar 

  • Becker S, Michalczyk A, Wilhelm S, Jaeger KE, Kolmar H (2007) Ultrahigh-throughput screening to identify E. coli cells expressing functionally active enzymes on their surface. Chembiochem 8: 943–949.

    Article  PubMed  CAS  Google Scholar 

  • Biles BD, Connolly BA (2004) Low-fidelity Pyrococcus furiosus DNA polymerase mutants useful in error-prone PCR. Nucleic Acids Res 32: e176.

    Article  PubMed  Google Scholar 

  • Bornscheuer UT (2001) Directed evolution of enzymes for biocatalytic applications. Biocat Biotrans 19: 84–96.

    Article  Google Scholar 

  • Bornscheuer UT, Pohl M (2001) Improved biocatalysts by directed evolution and rational protein design. Curr Opin Chem Biol 5: 137–143.

    Article  PubMed  CAS  Google Scholar 

  • Brakmann S, Schwienhorst A (eds.) (2004) Evolutionary Methods in Biotechnology: Clever Tricks for Directed Evolution. Weinheim: Wiley.

    Google Scholar 

  • Caldwell RC, Joyce GF (1992) Randomization of genes by PCR mutagenesis. PCR Methods Appl 2: 28–33.

    Google Scholar 

  • Crameri A, Raillard SA, Bermudez E, Stemmer WPC (1998) DNA shuffling of a family of genes from diverse species accelerates directed evolution. Nature 391: 288–291.

    Article  PubMed  CAS  Google Scholar 

  • Danielsen S, Eklund M, Deussen HJ, Graslund T, Nygren PA, Borchert TV (2001) In vitro selection of enzymatically active lipase variants from phage libraries using a mechanism-based inhibitor. Gene 272: 267–274.

    Article  PubMed  CAS  Google Scholar 

  • DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk MJ (2003) Creation of a productive, highly enantioselective nitrilase through Gene Site Saturation Mutagenesis (GSSM). J Am Chem Soc 125: 11476–11477.

    Article  PubMed  CAS  Google Scholar 

  • Fibla J, Gonzalezduarte R (1993) Colorimetric assay to determine alcohol-dehydrogenase activity. J Biochem Biophys Methods 26: 87–93.

    Article  PubMed  CAS  Google Scholar 

  • Fox RJ, Davis SC, Mundorff EC, Newman LM, Gavrilovic V, Ma SK, Chung LM, Ching C, Tam S, Muley S, Grate J, Gruber J, Whitman JC, Sheldon RA, Huisman GW (2007) Improving catalytic function by ProSAR-driven enzyme evolution. Nat Biotechnol 25: 338–344.

    Article  PubMed  CAS  Google Scholar 

  • Gray KA, Richardson TH, Kretz K, Short JM, Bartnek F, Knowles R, Kan L, Swanson PE, Robertson DE (2001) Rapid evolution of reversible denaturation and elevated melting temperature in a microbial haloalkane dehalogenase. Adv Synth Catal 343: 607–617.

    Article  CAS  Google Scholar 

  • Grognux J, Reymond JL (2004) Classifying enzymes from selectivity fingerprints. Chembiochem 5: 826–831.

    Article  PubMed  CAS  Google Scholar 

  • Grognux J, Wahler D, Nyfeler E, Reymond JL (2004) Universal chromogenic substrates for lipases and esterases. Tetrahedron: Asymmetry 15: 2981–2989.

    Article  CAS  Google Scholar 

  • Heinze B, Kourist R, Fransson L, Hult K, Bornscheuer UT (2007) Highly enantioselective kinetic resolution of two tertiary alcohols using mutants of an esterase from Bacillus subtilis. Prot Eng Des Sel 20: 125–131.

    Article  CAS  Google Scholar 

  • Henke E, Bornscheuer UT (1999) Directed evolution of an esterase from Pseudomonas fluorescens. Random mutagenesis by error-prone PCR or a mutator strain and identification of mutants showing enhanced enantioselectivity by a resorufin-based fluorescence assay. Biol Chem 380: 1029–1033.

    Article  PubMed  CAS  Google Scholar 

  • Henke E, Bornscheuer UT, Schmid RD, Pleiss J (2003) A molecular mechanism of enantiorecognition of tertiary alcohols by carboxylesterases. Chembiochem 4: 485–493.

    Article  PubMed  CAS  Google Scholar 

  • Horsman GP, Liu AMF, Henke E, Bornscheuer UT, Kazlauskas RJ (2003) Mutations in distant residues moderately increase the enantioselectivity of Pseudomonas fluorescens esterase towards methyl 3-bromo-2-methyl propanoate and ethyl 3-phenylbutyrate.  Chem Eur J 9: 1933–1939.

    Article  CAS  Google Scholar 

  • Janes LE, Kazlauskas RJ (1997) Quick E. A fast spectroscopic method to measure the enantioselectivity of hydrolases. J Org Chem 62: 4560–4561.

    Article  CAS  Google Scholar 

  • Jurgens C, Strom A, Wegener D, Hettwer S, Wilmanns M, Sterner R (2000) Directed evolution of a (beta alpha)(8)-barrel enzyme to catalyze related reactions in two different metabolic pathways. Proc Natl Acad Sci USA 97: 9925–9930.

    Article  PubMed  CAS  Google Scholar 

  • Kourist R, Bartsch S, Bornscheuer UT (2007) Highly enantioselective synthesis of arylaliphatic tertiary alcohols using mutants of an esterase from Bacillus subtilis. Adv Synth Catal 349: 1393–1398.

    Article  CAS  Google Scholar 

  • Kurtzman AL, Govindarajan S, Vahle K, Jones JT, Heinrichs V, Patten PA (2001) Advances in directed protein evolution by recursive genetic recombination: applications to therapeutic proteins. Curr Opin Biotechnol 12: 361–370.

    Article  PubMed  CAS  Google Scholar 

  • Leroy E, Bensel N, Reymond JL (2003) A low background high-throughput screening (HTS) fluorescence assay for lipases and esterases using acyloxymethylethers of umbelliferone. Bioorg Med Chem Lett 13: 2105–2108.

    Article  PubMed  CAS  Google Scholar 

  • Leung DW, Chen E, Goeddel DV (1989) A method for random mutagenesis of a defined DNA segment using a modified polymerase chain reaction. Technique 1: 11–15.

    Google Scholar 

  • Liebeton K, Zonta A, Schimossek K, Nardini M, Lang D, Dijkstra BW, Reetz MT, Jaeger KE (2000) Directed evolution of an enantioselective lipase. Chem Biol 7: 709–718.

    Article  PubMed  CAS  Google Scholar 

  • Liu AMF, Somers NA, Kazlauskas RJ, Brush TS, Zocher F, Enzelberger MM, Bornscheuer UT, Horsman GP, Mezzetti A, Schmidt-Dannert C, Schmid RD (2001) Mapping the substrate selectivity of new hydrolases using colorimetric screening: lipases from Bacillus thermocatenulatus and Phiostoma piliferum, esterases from Pseudomonas fluorescens and Streptomyces diastatochromogenes. Tetrahedron: Asymmetry 12: 545–556.

    Article  Google Scholar 

  • Lutz S, Bornscheuer UT (eds.) (2009) Protein Engineering Handbook. Weinheim: Wiley.

    Google Scholar 

  • Lutz S, Ostermeier M, Benkovic SJ (2001) Rapid generation of incremental truncation libraries for protein engineering using alpha phosphothioate nucleotides. Nucleic Acids Res 29: e16.

    Article  PubMed  CAS  Google Scholar 

  • Lutz S, Patrick WM (2004) Novel methods for directed evolution of enzymes: quality, not quantity. Curr Opin Biotechnol 15: 291–297.

    Article  PubMed  CAS  Google Scholar 

  • MacBeath G, Kast P, Hilvert D (1998) Redesigning enzyme topology by directed evolution. Science 279: 1958–1961.

    Article  PubMed  CAS  Google Scholar 

  • Mayer KM, Arnold FH (2002) A colorimetric assay to quantify dehydrogenase activity in crude cell lysates. J Biomol Screen 7: 135–140.

    Article  PubMed  CAS  Google Scholar 

  • Moore JC, Arnold FH (1996) Directed evolution of a para-nitrobenzyl esterase for aqueous-organic solvents. Nat Biotechnol 14: 458–467.

    Article  PubMed  CAS  Google Scholar 

  • Neylon C (2004) Chemical and biochemical strategies for the randomization of protein encoding DNA sequences: library construction methods for directed evolution. Nucleic Acids Res 32: 1448–1459.

    Article  PubMed  CAS  Google Scholar 

  • Olsen MJ, Stephens D, Griffiths D, Daugherty P, Georgiou G, Iverson BL (2000) Function-based isolation of novel enzymes from a large library. Nat Biotechnol 18: 1071–1074.

    PubMed  CAS  Google Scholar 

  • Ostermeier M, Lutz S (2003) The creation of ITCHY hybrid protein libraries. In Directed Evolution Library Creation: Methods and Protocols. FH Arnold and G Georgiou (eds.). Totowa, NJ: Humana Press, pp. 129–141.

    Chapter  Google Scholar 

  • Ostermeier M, Shim JH, Benkovic SJ (1999) A combinatorial approach to hybrid enzymes independent of DNA homology. Nat Biotechnol 17: 1205–1209.

    Article  PubMed  CAS  Google Scholar 

  • Otten LG, Quax WJ (2005) Directed evolution: selecting today’s biocatalysts. Biomol Eng 22: 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Patel PH, Kawate H, Adman E, Ashbach M, Loeb LA (2001) A single highly mutable catalytic site amino acid is critical for DNA polymerase fidelity. J Biol Chem 276: 5044–5051.

    Article  PubMed  CAS  Google Scholar 

  • Reetz MT, Carballeira JD (2007) Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes. Nat Biotechnol 2: 891–903.

    CAS  Google Scholar 

  • Reetz MT, Carballeira JD, Vogel A (2006a) Iterative saturation mutagenesis on the basis of B factors as a strategy for increasing protein thermostability. Angew Chem Int Ed 45: 7745–7751.

    Article  CAS  Google Scholar 

  • Reetz MT, Puls M, Carballeira JD, Vogel A, Jaeger KE, Eggert T, Thiel W, Bocola M, Otte N (2007) Learning from directed evolution: further lessons from theoretical investigations into cooperative mutations in lipase enantioselectivity. Chembiochem 8: 106–112.

    Article  PubMed  CAS  Google Scholar 

  • Reetz MT, Wang LW, Bocola M (2006b) Directed evolution of enantioselective enzymes: Iterative cycles of CASTing for probing protein-sequence space. Angew Chem Int Ed 45: 1236–1241. Erratum 2494.

    Article  CAS  Google Scholar 

  • Reetz MT, Wilensek S, Zha D, Jaeger KE (2001) Directed evolution of an enantioselective enzyme through combinatorial multiple-cassette mutagenesis. Angew Chem Int Ed 40: 3589–3591.

    Article  CAS  Google Scholar 

  • Reymond JL (ed.) (2005) Enzyme Assays. Weinheim: Wiley.

    Book  Google Scholar 

  • Schmidt M, Bornscheuer UT (2005) High-throughput assays for lipases and esterases. Biomol Eng 22: 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt M, Hasenpusch D, Kähler M, Kirchner U, Wiggenhorn K, Langel W, Bornscheuer UT (2006) Directed evolution of an esterase from Pseudomonas fluorescens yields a mutant with excellent enantioselectivity and activity for the kinetic resolution of a chiral building block. Chembiochem 7: 805–809.

    Article  PubMed  CAS  Google Scholar 

  • Schultheiss E, Paar C, Schwab H, Jose J (2002) Functional esterase surface display by the autotransporter pathway in Escherichia coli. J Mol Catal B: Enzym 18: 89–97.

    Article  CAS  Google Scholar 

  • Short JM (2001) Saturation mutagenesis in directed evolution. U.S. Patent 6,171,820.

    Google Scholar 

  • Soumillion P (2004) Selection of phage-displayed enzymes. In Evolutionary Methods in Biotechnology Clever Tricks for Directed Evolution. A Schwienhorst (eds.). Weinheim: Wiley, pp. 47–64.

    Google Scholar 

  • Stemmer WPC (1994) Rapid evolution of a protein by in vitro DNA shuffling. Nat Biotechnol 370: 389–391.

    CAS  Google Scholar 

  • Udit AK, Silberg JJ, Sieber V (2003) Sequence homology-independent protein recombination, SHIPREC. In Directed Evolution Library Creation: Methods and Protocols. FH Arnold and G Georgiou (eds.). Totowa, NJ: Humana Press, pp. 153–164.

    Chapter  Google Scholar 

  • Wahler D, Boujard O, Lefevre F, Reymond JL (2004) Adrenaline profiling of lipases and esterases with 1,2-diol and carbohydrate acetates. Tetrahedron 60: 703–710.

    Article  CAS  Google Scholar 

  • Wahler D, Reymond JL (2002) The adrenaline test for enzymes. Angew Chem Int Ed 41: 1229–1232.

    Article  CAS  Google Scholar 

  • Yang GY, Shamsuddin AM (1996) Gal-GalNAc: a biomarker of colon carcinogenesis. Histol Histopathol 11: 801–806.

    PubMed  CAS  Google Scholar 

  • Zhao H (1998) Molecular evolution by staggered extension process (StEP) in vitro recombination. Nat Biotechnol 16: 258–261.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this entry

Cite this entry

Bornscheuer, U.T. (2010). Evolving Enzymes for Biocatalysis. In: Timmis, K.N. (eds) Handbook of Hydrocarbon and Lipid Microbiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77587-4_217

Download citation

Publish with us

Policies and ethics