Skip to main content

Nanotubes in Minerals and Mineral-Related Systems

  • Conference paper
Minerals as Advanced Materials I

Abstract

One of the most important and exciting directions in modern science and technology is the effort to achieve systematic control of matter at the nanoscale (1 nm = 10−9 m = 10 Å ). This is now seen as a milestone toward a new industrial revolution as nanomanufacturing will allow significantly smaller consumption of energy, water, and resources than is associated with current industries. Nanotechnology involves creation of devices at the nanoscale based upon such materials as nanocrystals and clusters (quantum dots), nanowires, nanotubes, thin films, nanocomposites, and superlattices. The role of the nanoscale in mineralogy and geochemistry has recently received considerable attention because of its importance for a number of processes ranging from biomineralization to the formation of atmospheric nanoparticles (Banfield and Navrotsky 2002; Hochella 2002a,b). In this review, we will focus on naturally occurring nanotubes, i.e. hollow tubular structures with diameters in the range from about 1 to 1000 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman WC, Smith DM, Huling JC, Kim Y-W, Bailey JK, Brinker CJ (1993) Gas/vapor adsorption in imogolite: a microporous tubular aluminosilicate. Langmuir 9:1051–1057

    Article  Google Scholar 

  • Antill SJ (2003) Halloysite: a low-cost alternative nanotube. Aust J Chem 56:723

    Article  Google Scholar 

  • Banfield J, Navrotsky A (eds) (2002) Nanoparticles and the Environment. Rev Miner Geochem, vol 44. Mineralogical Society of America, Washington, DC

    Google Scholar 

  • Barber DJ, Bourdillon A, Freeman LA (1983) Fe-Ni-S-O layer phase in C2M carbonaceous chondrite — a hydrous sulfide? Nature 305:295–297

    Article  Google Scholar 

  • Bates TF, Sand LB, Mink JF (1950a) Tubular crystals of chrysotile asbestos. Science 3:512

    Article  Google Scholar 

  • Bates TF, Hildebrand FA, Swineford A (1950b) Morphology and structure of endellite and halloysite. Am Mineral 35:463–484

    Google Scholar 

  • Bayliss P (1987) Mineral nomenclature: imogolite. Mineral Mag 51:327

    Article  Google Scholar 

  • Bideaux RA (1970) Mineral rings and cylinders. Mineral Rec 1:105–112

    Google Scholar 

  • Bursill LA, Peng JL, Bourgeois LN (2000) Imogolite. An aluminosilicate nanotube material. Philos Mag A 80:105–117

    Article  Google Scholar 

  • Chianelli RR, Prestridge E, Pecorano T, DeNeufville JP (1979) Molybdenum disulfide in the poorly crystalline “rag” structure. Science 203:1105–1007

    Article  Google Scholar 

  • Clark AH (1970) A probable second occurence of Jambor’s “fibrous iron sulfide”. Am Mineral 55:283–284

    Google Scholar 

  • Cradwick PDG, Farmer VC, Russell JD, Masson CR, Wada K, Yoshinaga N (1972) Imogolite, a hydrated aluminum silicate of tubular structure. Nat Phys Sci 240:187–189

    Google Scholar 

  • Donkai N, Hoshino H, Kajiwara K, Miyamoto T (1993) Lyotropic mesophase of imogolite. 3. Observation of liquid crystal structure by scanning electron and novel polarized optical microscopy. Makromol Chem 194:559–580

    Article  Google Scholar 

  • Dvurechenskaya SS, Boyarskaya RV, Amosov RA (1993) Tubular and fibrous acanthite crystals. Miner Mag 15:90–94

    Google Scholar 

  • Falini G, Foresti E, Lesci G, Roveri N (2002) Structural and morphological characterization of synthetic chrysotile single crystals. Chem Commun 2002:1512–1513

    Article  Google Scholar 

  • Falini G, Foresti E, Gazzano M, Gualtieri AF, Leoni M, Lesci IG, Roveri N (2004) Tubular-shaped stoichiometric chrysotile nanocrystals. Chem Eur J 10:3043–3049

    Article  Google Scholar 

  • Farmer VC, Fraser AR (1979) Synthetic imogolite, a tubular silicate. Dev Sedimentol 27:547–553

    Google Scholar 

  • Farmer VC, Fraser AR, Tait JM (1977) Synthesis of imogolite: a tubular aluminum silicate polymer. J Chem Soc Chem Commun 1977:462–463

    Article  Google Scholar 

  • Frenzel A (1893) Ueber den Kylindrit. Neues Jahrb Miner Geol P 2:125–128

    Google Scholar 

  • Gabriel J-CP, Davidson P (2003) Mineral liquid crystals from self-assembly of anisotropic nanosystems. Top Curr Chem 226:119–172

    Article  Google Scholar 

  • Ghiurca V, Motiu A (1986) Curved jamesonite crystals from Romania. Mineral Rec 17:375–376

    Google Scholar 

  • Giese RFJ (1988) Kaolin minerals: structures and stabilities. Rev Mineral 19:29–66

    Google Scholar 

  • Goodman BA, Russell JD, Montez B, Oldfield E, Kirkpatrick RJ (1985) Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy. Phys Chem Miner 12:342–346

    Article  Google Scholar 

  • Gustafsson JP (2001) The surface chemistry of imogolite. Clay Clay Miner 49:73–80

    Article  Google Scholar 

  • Gustafsson JP, Karltun E, Bhattacharya P (1998) Allophane and imogolite in Swedish soils or why small, previously unknown, fibers influence the water quality in forests. Research Report TRITA-AMI 3046. Division of Land and Water Resources, Department of Civil and Environmental Engineering, Royal Institute of Technology, Stockholm, Sweden

    Google Scholar 

  • Gustafsson JP, Bhattacharya P, Karltun E (1999) Mineralogy of poorly crystalline aluminum phases in the B horizon of podzols in southern Sweden. Appl Geochem 14:707–718

    Article  Google Scholar 

  • Hochella MF Jr (2002a) There’s plenty of room at the bottom: nanoscience in geochemistry. Geochim Cosmochim Ac 66:735–743

    Article  Google Scholar 

  • Hochella MF Jr (2002b) Nanoscience and technology: the next revolution in the Earth sciences. Earth Planet Sc Lett 203:593–605

    Article  Google Scholar 

  • Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  • Imamura S, Hayashi Y, Kajiwara K, Hoshino H, Kaito C (1993) Imogolite: a possible new type of shape-selective catalyst. Ind Eng Chem Res 32:600–603

    Article  Google Scholar 

  • Ivanovskii AL (2002) Non-carbon nanotubes: synthesis and simulation. Russ Chem Rev 71: 175–194

    Article  Google Scholar 

  • Jambor JL (1969) Coalingite from the Muskox intrusion, Northwest Territories. Am Mineral 54:437–447

    Google Scholar 

  • Jambor JL (1976) New occurrences of the hybrid sulfide tochilinite. Geol Surv Can Paper 76-1B:65–69

    Google Scholar 

  • Johnson LM, Pinnavaia TJ (1991) Hydrolysis of (γ-aminopropyl)triethoxysilane-silylated imogolite and formation of a silylated tubular silicate-layered silicate nanocomposite. Langmuir 7:2636–2641

    Article  Google Scholar 

  • Johnson ID, Werpy TA, Pinnavaia TJ (1988) Tubular silicate-layered silicate intercalation compounds: a new family of pillared clays. J Am Chem Soc 110:8545–8547

    Article  Google Scholar 

  • Kajiwara K, Donkai N, Hiragi Y, Inagaki H (1986a) Lyotropic mesophase of imogolite. 1. Effect of polydispersity on phase diagram. Makromol Chem 187:2883–2893

    Article  Google Scholar 

  • Kajiwara K, Donkai N, Fujiyoshi Y, Inagaki H (1986b) Lyotropic mesophase of imogolite. Microscopic observation of imogolite mesophase. Makromol Chem 187:2895–2907

    Article  Google Scholar 

  • Kakos GA, Turney TW, Williams TB (1994) Synthesis and structure of tochilinite: a layered metal hydroxide/sulfide composite. J Solid State Chem 108:102–111

    Article  Google Scholar 

  • Korytkova EN, Maslov AV, Pivovarova LN, Drozdova IA, Gusarov VV (2004) Formation of Mg3Si2O5(OH)4 nanotubes under hydrothermal conditions. Glass Phys Chem 30:51–55

    Article  Google Scholar 

  • Lidzey RG (1995) Separation of heavy metals from aqueous media. United States Patent Office, United States of America. Bio-Separation Limited, Middlesex, UK. US Patent 5,441,648

    Google Scholar 

  • Luca V, Thomson S (2000) Intercalation and polymerization of aniline within a tubular aluminosilicate. J Mater Chem 10:2121–2126

    Article  Google Scholar 

  • Mackinnon IDR, Zolensky ME (1984) Proposed structures for poorly characterized phases in C2M carbonaceous chondrite meteorites. Nature 309:240–242

    Article  Google Scholar 

  • Makovicky E (1971) Microstructure of cylindrite. Neues Jb Miner Monat 1971:403–413

    Google Scholar 

  • Makovicky E (1974) Mineralogical data on cylindrite and incaite. Neues Jb Miner Monat 1974:235–256

    Google Scholar 

  • Mitra GB, Bhattacherjee S (1975) The structure of halloysite. Acta Crystallogr B 31:2851–2857

    Article  Google Scholar 

  • NollW, Kircher H (1951) Ueber die Morphologie von Asbesten und ihren Zusammenhang mit der Kristallstruktur. Neues Jb Miner Monat 10:219–240

    Google Scholar 

  • Organova NI (1989) Crystal chemistry of incommensurate and modulated mixed-layer minerals. Nauka, Moscow, p 143 (in Russian)

    Google Scholar 

  • Organova NI, Genkin AD, Drits VA, Molotkov SP, Kuz’mina OV, Dmitrik AL (1971) Tochilinite, a new sulfide-hydroxide of iron and magnesium. Zapiski VMO 100:477–487

    Google Scholar 

  • Organova NI, Drits VA, Dmitrik AL (1973) Structural study of tochilinite. I. Isometric variety. Sov Phys Crystallogr 17:761–767

    Google Scholar 

  • Organova NI, Drits VA, Dmitrik AL (1974a) Structural study of tochilinite. II. Needle-shaped variety. Unusual diffraction patterns. Sov Phys Crystallogr 18:606–609

    Google Scholar 

  • Organova NI, Drits VA, Dmitrik AL (1974b) Selected area electron diffraction study of a type II valleriite-like mineral. Am Mineral 59:190–200

    Google Scholar 

  • Organova NI, Gorshkov AI, Dikov YuP, Kul’bachinskii VA, Laputina IP, Sivtsov AV, Sluzhenikin SF, Ponomarenko AI (1988) New data for tochilinite. Izv AN SSSR Geol 6:84–98

    Google Scholar 

  • Patzke GR, Krumeich F, Nesper R (2002) Oxidic nanotubes and nanorods — anisotropic modules for a future nanotechnology. Angew Chem Int Edit 41:2446–2461

    Article  Google Scholar 

  • Pauling L (1930) The structure of chlorites. Proc Natl Acad Sci USA 16:578–582

    Article  Google Scholar 

  • Pohl PI, Faulon J-L, Smith DM (1996) Pore structure of imogolite: computer models. Langmuir 12:4463–4468

    Article  Google Scholar 

  • Price RR, Gaber BP, Lvov Y (2001) In-vitro release characteristics of tetracycline HCl, khellin and nicotinamide adenine dineculeotide from halloysite; a cylindrical mineral. J Microencapsul 6:713–722

    Article  Google Scholar 

  • Rakov EG (1999) Nanotubes of inorganic substances. Russ J Inorg Chem 44:1736–1748

    Google Scholar 

  • Rao CNR, Nath M (2003) Inorganic nanotubes. Dalton Trans 2003:1–24

    Article  Google Scholar 

  • Rao CNR, Tenne R (2004) Inorganic nanotubes. Philos T Roy Soc A 362:2099–2125

    Article  Google Scholar 

  • Remškar M (2004) Inorganic nanotubes. Adv Mater 16:1497–1504

    Article  Google Scholar 

  • Romanov SG, Sotomayor Torres CM, Yates HM, Pemble ME, Butko V, Tretijakov V (1997) Optical properties of self-assembled arrays of InP quantum wires confined in nanotubes of chrysotile asbestos. J Appl Phys 82:380–385

    Article  Google Scholar 

  • Seifert G, Köhler T, Tenne R (2002) Stability of metal chalcogenide nanotubes. J Phys Chem B 106:2497–2501

    Article  Google Scholar 

  • Tamura K, Kawamura K (2002) Molecular dynamics modeling of tubular aluminum silicate: imogolite. J Phys Chem B 106:271–278.

    Article  Google Scholar 

  • Tenne R (2002) Inorganic nanotubes and fullerene-like materials. Chem Eur J 8:5297–5304

    Article  Google Scholar 

  • Tenne R (2003) Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles. Angew Chem Int Edit 42:5124–5132

    Article  Google Scholar 

  • Tenne R, Homyonfer M, Feldman Y (1998) Nanoparticles of layered compounds with hollow cage structures (inorganic fullerene-like structures). Chem Mater 10:3225–3238

    Article  Google Scholar 

  • Tenne R, Margulis L, Genut M, Hodes G (1992) Polyhedral and cylindrical structures of tungsten disulphide. Nature 360:444–446

    Article  Google Scholar 

  • Tomeoka K, Buseck PR (1985) Indicators of aqueous alterations in CM carbonaceous chondrites: microtextures of a layered mineral containing Fe, S, O and Ni. Geochim Cosmochim Ac 49:2149–2164

    Article  Google Scholar 

  • Tremel W (1999) Inorganic nanotubes. Angew Chem Int Edit 38:2175–2179

    Article  Google Scholar 

  • Wada S (1987) Imogolite synthesis at 25°C. Clay Clay Miner 35:379–384

    Article  Google Scholar 

  • Wada S, Wada K (1982) Effects of substitution of germanium for silicon in imogolite. Clay Clay Miner 30:123–128

    Article  Google Scholar 

  • Wang S, Buseck PR (1992) Cylindrite: the relation between its cylindrical shape and modulated structure. Am Mineral 77:758–764

    Google Scholar 

  • Wang S, Kuo KH (1991) Crystal lattices and crystal chemistry of cylindrite and franckeite. Acta Crystallogr A 47:381–392

    Article  Google Scholar 

  • Watson JHP, Ellwood DC (2003) The removal of the pertechnetate ion and actinides from radioactive waste streams at Hanford, Washington, USA and Sellafield, Cumbria, UK: the role of iron-sulfide-containing adsorbent materials. Nucl Eng Des 226:375–385

    Article  Google Scholar 

  • Werpy TA, Michot LJ, Pinnavaia TJ (1989) Adsorption properties of a tubular silicate — layered silicate intercalation complex formed from imogolite and montmorillonite. Clay Res 8:47–52

    Google Scholar 

  • Whittaker EJW (1953) The structure of chrysotile. Acta Crystallogr 6:747–748

    Article  Google Scholar 

  • Whittaker EJW (1955) A classification of cylindrical lattices. Acta Crystallogr 8:571–574

    Article  Google Scholar 

  • Whittaker EJW (1956a) Structure of chrysotile. II. Clinochrysotile. Acta Crystallogr 9:855–862

    Article  Google Scholar 

  • Whittaker EJW (1956b) Structure of chrysotile. III. Orthochrysotile. Acta Crystallogr 9:862–864

    Article  Google Scholar 

  • Whittaker EJW (1956c) Structure of chrysotile. IV. Parachrysotile. Acta Crystallogr 9:865–867

    Article  Google Scholar 

  • Wicks FJ, O’Hanley DS (1988) Serpentine minerals: structure and petrology. Rev Mineral 19:91–159

    Google Scholar 

  • Williams TD, Hyde BG (1988) Electron microscopy of cylindrite and franckeite. Phys Chem Miner 15:521–544

    Article  Google Scholar 

  • Yada K (1967) Study of the chrysotil asbestos by high resolution transmission electron microscopy. Acta Crystallogr 23:704–707

    Article  Google Scholar 

  • Yada K (1971) Study of the microstructure of chrysotil asbestos by high resolution transmission electron microscopy. Acta Crystallogr A 27:659–664

    Article  Google Scholar 

  • Yada K, Iishi K (1977) Growth and microstructure of synthetic chrysotile. Am Mineral 62:958–965

    Google Scholar 

  • Yoshinaga N, Aomine S (1962) Allophane in some Ando soils. Soil Sci Plant Nutr 8(2):6–13

    Google Scholar 

  • Zega TJ, Garvie LAJ, Dodony I, Buseck PR (2004) Serpentine nanotubes in the Mighei CM chondrite. Earth Planet Sc Lett 223:141–146

    Article  Google Scholar 

  • Zolensky ME (1984) Hydrothermal alteration of CM carbonaceous chondrites: implications of the identification of tochilinite as one type of meteoritic PCP. Meteoritics 19:346–347

    Google Scholar 

  • Zolensky ME, Mackinnon IDR (1986) Microstructures of cylindrical tochilinites. Am Mineral 71:1201–1209

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Krivovichev, S.V. (2008). Nanotubes in Minerals and Mineral-Related Systems. In: Krivovichev, S.V. (eds) Minerals as Advanced Materials I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77123-4_24

Download citation

Publish with us

Policies and ethics