Skip to main content

Heterophyllosilicates, a Potential Source of Nanolayers for Materials Science

  • Conference paper
Minerals as Advanced Materials I
  • 1360 Accesses

Abstract

Layer silicates (phyllosilicates) are a well known source of nanolayers for technological applications (Auerbach et al. 2004). In particular, low-charge tetrahedraloctahedral-tetrahedral (TOT) layers of clay minerals, e.g. smectites, are used to prepare organoclay complexes, nanocomposites and pillared materials. This contribution aims to attract the attention on the possibility of using TOT-like layers of heterophyllosilicates (Ferraris et al. 1996) to prepare organoclay-like hybrids and pillared structures. The presence of five and six co-ordinated titanium in the layers of the heterophyllosilicates looks particularly appealing owing to the well known catalytic properties of this chemical element.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Auerbach SM, Carrado KA, Dutta PK (eds) (2004) Handbook of layered materials. Marcel Dekker, New York

    Google Scholar 

  • Azarova YuV, Pekov IV Chukanov NV, Zadov AE (2002) Products and processes of the vuonnemite transformations at the low-temperature alteration of ultraagpaitic pegmatites (in Russian). Zapiski VMO 131(5):112–121

    Google Scholar 

  • Belov NV, Gavrilova GS, Solov’eva LP, Khalilov AD (1978) The refined structure of lomonosovite. Sov Phys Dokl 22:422–424

    Google Scholar 

  • Chernov AN, Ilyukhin VV, Maksimov BA, Belov NV (1971) Crystal structure of innelite, Na2Ba3(Ba,K,Mn)(Ca,Na)Ti(TiO2)2[Si2O7]2(SO4)2. Sov Phys Crystallogr 16:87–92

    Google Scholar 

  • Ercit TS, Cooper MA, Hawthorne FC (1998) The crystal structure of vuonnemite, Na11Nb2(Si2O7)(PO4)2O3(F,OH), a phosphate-bearing sorosilicate of the lomonosovite group. Can Mineral 36:1311–1320

    Google Scholar 

  • Ferraris G (2006) Pillared materials from layer titanosilicates?. Sol St Phen 111:47–50

    Article  Google Scholar 

  • Ferraris G, Merlino S (eds) (2005) Micro and mesoporous mineral phases, vol 57. Rev Mineral Geochem, Mineralogical Soc, Washington, DC, America

    Google Scholar 

  • Ferraris G, Belluso E, Gula A, Soboleva SV, Ageeva OA, Borutskii BE (2001a) A structural model of the layer titanosilicate bornemanite based on seidozerite and lomonosovite modules. Can Mineral 39:1667–1675

    Google Scholar 

  • Ferraris G, Bloise A, Cadoni M (2007) Layered titanosilicates — a review and some results on the hydrothermal synthesis of bafertisite. Micropor Mesopor Mat doi: 10.1016/j.micromeso.2007.02.036

    Google Scholar 

  • Ferraris G, Ivaldi G, Khomyakov AP, Soboleva SV, Belluso E, Pavese A (1996) Nafertisite, a layer titanosilicate member of a polysomatic series including mica. Eur J Mineral 8:241–249

    Google Scholar 

  • Ferraris G, Ivaldi G, Pushcharovsky DYu, Zubkova NV, Pekov IV (2001b) The crystal structure of delindeite, Ba2{(Na,K,□)3(Ti,Fe)[Ti2(O,OH)4Si4O14] (H2O,OH)2}, a member of the meroplesiotype bafertisite series. Can Mineral 39:1306–1316

    Google Scholar 

  • Ferraris G, Makovicky E, Merlino S (2004) Crystallography of modular materials. IUCr Monographs in Crystallography, Oxford University Press, Oxford

    Google Scholar 

  • Guan YaS, Simonov VI, Belov NV (1963) Crystal structure of bafertisite, BaFe2TiO[Si2O7](OH)2. Dokl Akad Sci 149:123–126

    Google Scholar 

  • Khalilov AP (1989) Refinement of the crystal structure of murmanite and new data on its crystal chemistry. Mineral Zh 11(5):19–27 (in Russian)

    Google Scholar 

  • Khomyakov AP (1995) Mineralogy of hyperagpaitic alkaline rocks. Clarendon Press, Oxford

    Google Scholar 

  • Khomyakov AP (2004) Zeolite-like amphoterosilicates of hyperagpaitic rocks and their unique properties. Rev Mineral Geochem Accad Lincei Roma 231–234

    Google Scholar 

  • Krivovichev SV, Armbruster T, Yakovenchuk VN, Pakhomovsky YA, Men’shikov YP (2003) Crystal structures of lamprophyllite-2M and lamprophyllite-2O from the Lovozero alkaline massif, Kola Peninsula, Russia. Eur J Mineral 15:711–718

    Article  Google Scholar 

  • Massa W, Yakubovich OV, Kireev VV, Mel’nikov OK (2000) Crystal structure of a new vanadate variety in the lomonosovite group: Na5Ti2O2[Si2O7](VO4). Solid State Sci 2:615–623

    Article  Google Scholar 

  • Matsubara S (1980) The crystal structure of orthoericssonite. Mineral J 10:107–121

    Article  Google Scholar 

  • McDonald AM, Grice JD, Chao GY (2000) The crystal structure of yoshimuraite, a layered Ba-Mn-Ti silicophosphate, with comments of five-coordinated Ti4+. Can Mineral 38:649–656

    Article  Google Scholar 

  • Nèmeth P (2004) Characterization of new mineral phases belonging to the heterophyllosilicate series. Ph D dissertation Università di Torino Torino Italy

    Google Scholar 

  • Nèmeth P, Ferraris G, Radnóczi G, Ageeva OA (2005) TEM and X-ray study of syntactic intergrowths of epistolite with murmanite and shkatulkalite. Can Mineral 45:973–987

    Article  Google Scholar 

  • Pekov IV (2000) Lovozero massif: history, pegmatites, minerals. Ocean Pictures Ltd, Moscow

    Google Scholar 

  • Pekov IV, Chukanov NV, Kulikova IM, Belakovsky DI (2006) Phosphoinnelite Ba4Na3Ti3Si4O14(PO4,SO4)2(O,F)2, a new mineral from agpaitic pegmatites of Kovdor massif, Kola Peninsula. Zapiski VMO 135(3):52–60 (in Russian)

    Google Scholar 

  • Pen ZZ, Zhang J, Shu J (1984) The crystal structure of barytolamprophyllite. Kexue Tongbao 29:237–241

    Google Scholar 

  • Pushcharovsky DYu, Pasero M, Merlino S, Vladykin NV, Zubkova NV, Gobechiya ER (2002) Crystal structure of zirconium-rich seidozerite. Crystallogr Rep 47:196–200

    Article  Google Scholar 

  • Rastsvetaeva RK, Chukanov NV (1999) Crystal structure of a new high-barium analogue of lamprophyllite with a primitive unit cell. Dokl Chem 368(4–6):228–231

    Google Scholar 

  • Rastsvetaeva RK, Tamazyan RA, Sokolova EV, Belakovskii DI (1991) Crystal structures of two modifications of natural Ba,Mn-titanosilicate. Sov Phys Crystallogr 36:186–189

    Google Scholar 

  • Rozenberg KA, Rastsvetaeva RK, Verin IA (2003) Crystal structure of surkhobite: new mineral from the family of titanosilicate micas. Crystallogr Rep 48:384–389

    Article  Google Scholar 

  • Schoonheydt RA, Pinnavaia T, Lagaly G, Gangas N (1999) Pillared clays and pillared layered solids. Pure Appl Chem 71:2367–2371

    Article  Google Scholar 

  • Sokolova E (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. Can Mineral 44:1273–1333

    Article  Google Scholar 

  • Sokolova E, Hawthorne FC (2001) The crystal chemistry of the [M3φ11–14] trimeric structures from hyperagpaitic complexes to saline lakes. Can Mineral 39:1275–1294

    Article  Google Scholar 

  • Sokolova E, Hawthorne FC (2005) The crystal chemistry of epistolite. Can Mineral 42:797–806

    Article  Google Scholar 

  • Sokolova E, Hawthorne FC, Khomyakov AP (2005) Polyphite and sobolevite: revision of their structures. Can Mineral 43:1527–1544

    Article  Google Scholar 

  • Yakovenchuk VN, Ivanyuk GYu, Pakhomovsky YaA, Men’shikov YuP (2005) Khibiny minerals. Laplandia Minerals, Apatity

    Google Scholar 

  • Yamnova NA, Egorov-Tismenko YuK, Pekov IV (1998) Crystal structure of perraultite from the Coastal Region of the Sea of Azov. Crystallogr Rep 43:401–410

    Google Scholar 

  • Yang Z, Cressey G, Welch M (1999) Reappraisal of the space group of bafertisite. Powder Diffr 14:22–24

    Google Scholar 

  • Zhou K, Rastsvetaeva RK, Khomyakov AP, Ma Z, Shi N (2002) Crystal structure of new micalike titanosilicate — bussenite, Na2Ba2Fe2+[TiSi2O7][CO3]O (OH)(H2O)F. Crystallogr Rep 47:50–53

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ferraris, G. (2008). Heterophyllosilicates, a Potential Source of Nanolayers for Materials Science. In: Krivovichev, S.V. (eds) Minerals as Advanced Materials I. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77123-4_21

Download citation

Publish with us

Policies and ethics