Skip to main content

‘Disc–Jet’ Coupling in Black Hole X-Ray Binaries and Active Galactic Nuclei

  • Chapter
  • First Online:
The Jet Paradigm

Part of the book series: Lecture Notes in Physics ((LNP,volume 794))

Abstract

In this chapter I will review the status of our phenomenological understanding of the relation between accretion and outflows in accreting black hole systems. This understanding arises primarily from observing the relation between X-ray and longer wavelength (infrared, radio) emission. The view is necessarily a biased one, beginning with observations of X-ray binary systems, and attempting to see if they match with the general observational properties of active galactic nuclei.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.C. Begelman, C.F. McKee, G.A. Shields: ApJ, 271, 70 (1983)

    Article  ADS  Google Scholar 

  2. T. Belloni, I. Parolin, M. Del Santo et al.: MNRAS, 367, 1113 (2006)

    Article  ADS  Google Scholar 

  3. P.N. Best, G. Kauffmann, T.M. Heckman et al.: MNRAS, 362, 25 (2005)

    Article  ADS  Google Scholar 

  4. R.D. Blandford, D.G. Payne: MNRAS, 199, 883 (1982)

    MATH  ADS  Google Scholar 

  5. C. Brocksopp, R.P. Fender, M. McCollough et al.: MNRAS, 331, 765 (2002)

    Article  ADS  Google Scholar 

  6. C. Cabanac, R.P. Fender, R.H.J. Dunn, E.G. Koerding: MNRAS, in press (arXiv:0904.0701) (2009)

    Google Scholar 

  7. S. Corbel, R.P. Fender, A.K. Tzioumis et al.: A&A, 359, 251 (2000)

    ADS  Google Scholar 

  8. S. Corbel, M. Nowak, R.P. Fender et al.: A&A, 400, 1007 (2003)

    Article  ADS  Google Scholar 

  9. R.J.H. Dunn, R.P. Fender, E.G. Körding et al.: MNRAS, 387, 545 (2008)

    Article  ADS  Google Scholar 

  10. M. Elvis: ApJ, 545, 63 (2000)

    Article  ADS  Google Scholar 

  11. E. Emsellem, M. Cappellari, D. Krajnović et al.: MNRAS, 379, 401 (2007)

    Article  ADS  Google Scholar 

  12. A.C. Fabian: In: L.C.H. (ed.) Coevolution of Black Holes and Galaxies, from the Carnegie Observatories Centennial Symposia. Published by Cambridge University Press, as part of the Carnegie Observatories Astrophysics Series, p. 446 (2004)

    Google Scholar 

  13. H. Falcke, E. Körding, S. Markoff: A&A, 414, 895 (2004)

    Article  ADS  Google Scholar 

  14. R.P. Fender, S. Corbel, T. Tzioumis et al.: ApJ, 519, L165 (1999)

    Article  ADS  Google Scholar 

  15. R.P. Fender: MNRAS, 322, 31 (2001)

    Article  ADS  Google Scholar 

  16. R.P. Fender, E. Gallo, P.G. Jonker: MNRAS, 343, L99 (2003)

    Article  ADS  Google Scholar 

  17. R.P. Fender, T.M. Belloni, E. Gallo: MNRAS, 355, 1105 (2004)

    Article  ADS  Google Scholar 

  18. R. Fender: Jets from X-ray binaries. In: W. Lewin, M. van der Klis (eds.) Compact Stellar X-ray Sources, pp. 381–419. Cambridge Astrophysics Series No. 39, Cambridge, (2006)

    Google Scholar 

  19. R.P. Fender, J. Homan, T.M. Belloni: MNRAS, in press (arXiv:0903.5166) (2009)

    Google Scholar 

  20. L. Ferrarese, D. Merritt: ApJ, 539, L9 (2000)

    Article  ADS  Google Scholar 

  21. J. Ferreira, P.-O. Petrucci, G. Henri et al.: A&A, 447, 813 (2006)

    Article  ADS  Google Scholar 

  22. J. Frank, A. King, D.J. Raine: Accretion Power in Astrophysics, third edition, Cambridge University Press, Cambridge (2002)

    Google Scholar 

  23. E. Gallo: AIPC, 924, 715 (2007)

    ADS  Google Scholar 

  24. E. Gallo, D. Marolf: Am. J. Phys., Resource Letter (arXiv:0806.2316) (2008)

    Google Scholar 

  25. E. Gallo, R.P. Fender, G.G. Pooley: MNRAS, 344, 60 (2003)

    Article  ADS  Google Scholar 

  26. E. Gallo, S. Corbel, R.P. Fender et al.: MNRAS, 347, L52 (2004)

    Article  ADS  Google Scholar 

  27. E. Gallo, R.P. Fender, C. Kaiser et al.: Nature, 436, 819 (2005)

    Article  ADS  Google Scholar 

  28. E. Gallo, R.P. Fender, J.C.A. Miller-Jones et al.: MNRAS, 370, 1351 (2006)

    Article  ADS  Google Scholar 

  29. M. Garcia, J.E. McClintock, R. Narayan et al.: ApJ, 553, L47 (2001)

    Article  ADS  Google Scholar 

  30. K. Gebhardt, R. Bender, G. Bower et al.: ApJ, 539, L13 (2000)

    Article  ADS  Google Scholar 

  31. D.C. Hannikainen, R.W. Hunstead, D. Campbell-Wilson et al.: A&A, 337, 460 (1998)

    ADS  Google Scholar 

  32. S. Heinz, H.-J. Grimm: ApJ, 633, 384 (2005)

    Article  ADS  Google Scholar 

  33. S. Heinz, A. Merloni, J. Schwab: ApJ, 658, L9 (2007)

    Article  ADS  Google Scholar 

  34. R.M. Hjellming, X. Han: Radio properties of X-ray binaries. In: X-ray Binaries, Cambridge University Press, Cambridge (1995)

    Google Scholar 

  35. R.M. Hjellming, M.P. Rupen: Nature, 375, 464 (1995)

    Article  ADS  Google Scholar 

  36. J. Homan, T. Belloni: Ap&SS, 300, 107 (2005)

    Article  ADS  Google Scholar 

  37. R.I. Hynes, C.A. Haswell, W. Cui et al.: MNRAS, 345, 292 (2003)

    Article  ADS  Google Scholar 

  38. R.I. Hynes, E.L. Robinson, K.J. Pearson et al.: ApJ, 651, 401 (2006)

    Article  ADS  Google Scholar 

  39. C.R. Kaiser, P.N. Best: MNRAS, 381, 1548 (2007)

    Article  ADS  Google Scholar 

  40. G. Kanbach, C. Straubmeier, H. Spruit et al.: Nature, 414, 180 (2001)

    Article  ADS  Google Scholar 

  41. A.R. King, M.B. Davies, M.J. Ward, G. Fabbiano, M. Elvis: ApJ, 552, L109 (2001)

    Article  ADS  Google Scholar 

  42. M. Klein-Wolt, M. van der Klis: ApJ, 675, 1407 (2008)

    Article  ADS  Google Scholar 

  43. M. Klein-Wolt, R.P. Fender, G.G. Pooley et al.: MNRAS, 331, 745 (2002)

    Article  ADS  Google Scholar 

  44. E. Koerding, H. Falcke, S. Markoff: A&A, 382, L13 (2002)

    Article  ADS  Google Scholar 

  45. E. Koerding, H. Falcke, S. Corbel: A&A, 456, 439 (2006)

    Article  MATH  ADS  Google Scholar 

  46. E.G. Koerding, R.P. Fender, S. Migliari: MNRAS, 369, 1451 (2006)

    Article  ADS  Google Scholar 

  47. E. Koerding, S. Jester, R.P. Fender: MNRAS, 372, 1366 (2006)

    Article  ADS  Google Scholar 

  48. E. Koerding, A. Jester, R. Fender: MNRAS, 383, 277 (2008)

    Article  ADS  Google Scholar 

  49. E.G. Koerding, S. Migliari, R. Fender et al.: MNRAS, 380, 301 (2007)

    Article  ADS  Google Scholar 

  50. E. Koerding, M. Rupen, C. Knigge et al.: Science, 320, 1318 (2008)

    Article  ADS  Google Scholar 

  51. S. Koide, K. Shibata, T. Kudoh et al.: Science, 295, 1688 (2002)

    Article  ADS  Google Scholar 

  52. J.H. Krolik: Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment, Princeton Series in Astrophysics, Princeton University Press, Princeton (1999)

    Google Scholar 

  53. J.H. Krolik: ApJ, 551, 72 (2001)

    Article  ADS  Google Scholar 

  54. A. Lawrence, M.G. Watson, K.A. Pounds et al.: Nature, 325, 694 (1987)

    Article  ADS  Google Scholar 

  55. J.E. McClintock, R.A. Remillard: Black hole binaries. In: W. Lewin, M. van der Klis (eds.) Compact Stellar X-ray Sources, pp. 157–213. Cambridge Astrophysics Series No. 39, Cambridge, (2006)

    Google Scholar 

  56. J.E. McClintock, K. Horne, R.A. Remillard: ApJ, 442, 358 (1995)

    Article  ADS  Google Scholar 

  57. J.E. McClintock, R. Narayan, M.R. Garcia et al.: ApJ, 593, 435 (2003)

    Article  ADS  Google Scholar 

  58. I. McHardy, B. Czerny: Nature, 325, 696 (1987)

    Article  ADS  Google Scholar 

  59. I.M. McHardy, I.E. Papadakis, P. Uttley et al.: MNRAS, 348, 783 (2004)

    Article  ADS  Google Scholar 

  60. I. McHardy, E. Körding, C. Knigge et al.: Nature, 444, 730 (2006)

    Article  ADS  Google Scholar 

  61. I. McHardy: MemSAIt, 59, 239 (1988)

    ADS  Google Scholar 

  62. T.J. Maccarone: MNRAS, 360, L30 (2005)

    ADS  Google Scholar 

  63. T.J. Maccarone, M. Servillat: MNRAS, in press (arXiv:astro-ph/0806.2387) (2008)

    Google Scholar 

  64. T.J. Maccarone, R.P. Fender, A.K. Tzioumis: MNRAS, 356, L17 (2005)

    ADS  Google Scholar 

  65. M. Machida, K.E. Nakamura, R. Matsumoto: PASJ, 58, 193 (2006)

    ADS  Google Scholar 

  66. J. Malzac, A. Merloni, A.C. Fabian: MNRAS, 351, 253 (2004)

    Article  ADS  Google Scholar 

  67. A.P. Marscher, S. Jorstad, J.-L. Gomez et al.: Nature, 417, 625 (2002)

    Article  ADS  Google Scholar 

  68. A. Marscher: Astron. Nachr. 327, 217 (2006)

    Article  ADS  Google Scholar 

  69. A. Markowitz, R. Edelson, S. Vaughan et al.: ApJ, 593, 96 (2003)

    Article  ADS  Google Scholar 

  70. A. Merloni, S. Heinz, T. di Matteo: MNRAS, 345, 1057 (2003)

    Article  ADS  Google Scholar 

  71. A. Merloni, E. Körding, S. Heinz et al.: New Astronomy, 11, 567 (2006)

    Article  ADS  Google Scholar 

  72. A. Merloni, S. Heinz: MNRAS, 381, 589 (2007)

    Article  ADS  Google Scholar 

  73. S. Migliari, R. Fender: MNRAS, 366, 79 (2006)

    ADS  Google Scholar 

  74. S. Migliari, R. Fender, M. van der Klis: MNRAS, 363, 112 (2005)

    Article  ADS  Google Scholar 

  75. J.M. Miller, A.C. Fabian, R. Wijnands et al.: ApJ, 570, L69 (2002)

    Article  ADS  Google Scholar 

  76. J.M. Miller, J. Raymond, A. Fabian et al.: Nature, 441, 953 (2006)

    Article  ADS  Google Scholar 

  77. I.F. Mirabel, L.F. Rodriguez: Nature, 371, 46 (1994)

    Article  ADS  Google Scholar 

  78. N. Murray, J. Chiang: Nature, 382, 789 (1996)

    Article  ADS  Google Scholar 

  79. N. Murray, J. Chiang: ApJ, 474, 91 (1997)

    Article  ADS  Google Scholar 

  80. N. Murray, J. Chiang: ApJ, 494, 125 (1998)

    Article  ADS  Google Scholar 

  81. R. Mushotsky: Progress of Theoretical Physics Supplement, No. 155, pp. 27–44 (2004)

    Google Scholar 

  82. C.P. O’Dea: PASP, 110, 493 (1988)

    Article  Google Scholar 

  83. B.M. Peterson, A. Wandel: ApJ, 521, L95 (1999)

    Article  ADS  Google Scholar 

  84. B.M. Peterson, L. Ferrarese, K.M. Gilbert et al.: ApJ, 613, 682 (2004)

    Article  ADS  Google Scholar 

  85. D. Proga, T.R. Kallman: ApJ, 465, 455 (2002)

    Article  ADS  Google Scholar 

  86. N.I. Shakura, R.A. Sunyaev: A&A, 24, 337 (1973)

    ADS  Google Scholar 

  87. A. Soltan: MNRAS, 200, 115 (1982)

    ADS  Google Scholar 

  88. R. Soria, R.P. Fender, D.C. Hannikainen et al.: MNRAS, 368, 1527 (2006)

    Article  ADS  Google Scholar 

  89. H. Tanabaum, H. Gursky, E. Kellogg et al.: ApJ, 177, L5 (1972)

    Article  ADS  Google Scholar 

  90. G. ’t Hooft: Int. J. Mod. Phys. D15 1587-1602 (arXiv:gr-qc/0606026) (2006)

    Google Scholar 

  91. J.S. Ulvestad, J.E. Greene, L.C. Ho: ApJ, 661 L151 (2007)

    Article  ADS  Google Scholar 

  92. C.M. Urry, P. Padovani: PASP, 107, 803 (1995)

    Article  ADS  Google Scholar 

  93. P. Uttley, I.M. McHardy, I.E. Papadakis: MNRAS, 332, 231 (2002)

    Article  ADS  Google Scholar 

  94. J.C. Vernaleo, C.S. Reynolds: ApJ, 645, 83 (2006)

    Article  ADS  Google Scholar 

  95. I. Wanders, M.R. Goad, K.T. Korista et al.: ApJ, 453, L87 (1995)

    Article  ADS  Google Scholar 

  96. J. Wilms, C.S. Reynolds, M.C. Begelman et al.: MNRAS, 328, L27 (2001)

    Article  ADS  Google Scholar 

  97. A.S. Wilson, E.J.M. Colbert: ApJ, 438, 62 (1995)

    Article  ADS  Google Scholar 

  98. S.N. Zhang, W. Cui, W. Chen: ApJ, 482, L155 (1997)

    Article  ADS  Google Scholar 

  99. X.-G. Zhang, D. Dultzin-Hacyan, T.-G. Wang: MNRAS, 374, 691 (2007)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

I owe much of my understanding of this field of research to collaborations and conversations with a large number of people, most notably those who are coauthors with me on a wide range of papers. They know who they are, and if you do not, use ADS. In addition, I would like to thank the participants at the ISSI workshop in January 2008 for helping to further clarify ideas, and Christian Knigge, Mike Goad, and Daniel Proga for discussions about broad line regions and line-driven winds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Fender .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fender, R. (2010). ‘Disc–Jet’ Coupling in Black Hole X-Ray Binaries and Active Galactic Nuclei. In: Belloni, T. (eds) The Jet Paradigm. Lecture Notes in Physics, vol 794. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76937-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76937-8_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76936-1

  • Online ISBN: 978-3-540-76937-8

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics