Skip to main content

Response of Photosynthetic Organelles to Abiotic Stress: Modulation by Sulfur Metabolism

  • Chapter
Sulfur Assimilation and Abiotic Stress in Plants

Sulfur metabolism mediated modulation of plant response to various abiotic stress factors is the focus of this review. Since chloroplast is extremely sensitive to abiotic stress factors and at the same time a major location of sulfur assimilation, the organelle plays a major role in the modulation of stress response. The photosynthetic organelle coordinates carbon, nitrogen, and sulfur metabolic pathways and provides the essential precursors for synthesis of sulfur compounds. The abiotic stress factors like high light, low light, temperature extremes, drought, and UV radiations which the organelle experiences lead to creation of an oxidative environment and production of reactive oxygen species (ROS). Sulfur metabolites containing thiol residues with reversible oxidation-reduction potential effectively scavenge ROS in a series of biochemical reactions. Abiotic stress factors cause up- and downregulations of several stress-related genes. The stress signals, their transmission, and downstream signaling network regulating gene expression are complex. The stress-induced redox signals generated in chloroplast play a major role in different signal transduction systems and expression of stress-responsive genes in green plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrol YP, Ahmad A (2003) Sulphur in Plants. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • A-H-Mackerness S, Surplus SL, Jordan BR, Thomas B (1998) Effects of supplementary UV-B on photosynthetic transcript at different stages of leaf development and light levels in pea (Pisum sativum L.): role of ROS and antioxidant enzymes. Photochem Photobiol 68:88–96

    Google Scholar 

  • Anderson JM, Chow WS, Park Y (1995) The grand design of photosynthesis: acclimation of the photosynthetic apparatus to environmental cues. Photosynth Res 46:129–39

    CAS  Google Scholar 

  • Andersson B, Barber J (1996) Mechanisms of photodamage and protein degradation during photoinhibition of photosystem II. In: Baker NR (ed) Photosynthesis and the environment. Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 101–21

    Google Scholar 

  • Andersson U, Heddad M, Adamska I (2003) Light stress-induced one-helix protein of the chlorophyll a/b-binding family associated with photosystem I. Plant Physiol 132:811–20

    PubMed  CAS  Google Scholar 

  • Andrews TJ (1988) Catalysis by cyanobacterial ribulose bisphosphate carboxylase large subunits in the complete absence of small subunits. J Biol Chem 263:12213–19

    PubMed  CAS  Google Scholar 

  • Andrews TJ, Lorimer GH (1987) Rubisco: structure, mechanisms, and prospects for improvement. In: Hatch MD, Boardman NK (eds) The biochemistry of plants, vol. 10. Academic Press, San Diego, pp. 131–218

    Google Scholar 

  • Asada K (2000) The water-water cycle as alternative photon and electron sinks. Phil Trans R Soc Lond B 355:1419–31

    CAS  Google Scholar 

  • Barber J, Sharma J (2000) Application of mass spectrometry to the study of photosystem II. In: Yunus M, Pathre U, Mohanty P (eds), Probing photosynthesis: mechanisms, regulation and adaptation, Taylor & Francis, London, pp. 413–25

    Google Scholar 

  • Bischof K, Krabs G, Hanelt D, Wiencke C (2002) Solar ultraviolet radiation affects the activity of ribuluse-1, 5 bisphosphate carboxylase oxygenase and composition of photosynthetic and xanthophyll cycle pigments in intertidal green alga Ulva lactuca L. Planta 5:502–9

    Google Scholar 

  • Biswal B (1997) Chloroplasts, pigments and molecular responses of photosynthesis under stress. In: Pessarakli M (ed), Handbook of photosynthesis, Marcel Dekker Inc, New York, pp. 877–85

    Google Scholar 

  • Biswal B, Biswal UC (1999) Photosynthesis under stress: stress signals and adaptive response of chloroplasts. In: Pessarakli M (ed), Handbook of plant and crop stress, Marcel Dekker Inc, New York, pp. 315–36

    Google Scholar 

  • Biswal UC, Biswal B, Raval MK (2003) Chloroplast biogenesis: from proplastid to gerontoplast, Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Biswal UC, Raval MK, Biswal B, Joshi PN (1997) Photosystem II and its response to stress. In: Purohit SS (ed), Agro’s annual review of plant physiology, Agro Botanical Publishers, Bikaner, India, pp. 36–71

    Google Scholar 

  • Bornman JF(1989) Target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobiol (B: Biology) 4:145–58

    CAS  Google Scholar 

  • Bradford KJ, Hsiao TC (1982) Stomatal behaviour and water relations of waterlogged tomato plants. Plant Physiol 70:1508–13

    PubMed  Google Scholar 

  • Brosche M, Strid A (2003) Molecular events following perception of UV-B radiation by plants. Physiol Plant 117:1–10

    CAS  Google Scholar 

  • Brunswick P, Cresswell CF (1988) Nitrate uptake into intact pea chloroplast II. Influence of electron transport regulates uncoupler ATPase and anion uptake inhibitors and protein binding reagents. Plant Physiol 86:384–9

    PubMed  CAS  Google Scholar 

  • Canaani C, Havaux M, Malkin S (1986). Hydroxylamine, hydrazine and methylamine donate electrons to the photo-oxidizing side of PSII in leaves inhibited in oxygen evolution due to water stress. Biochim Biophys Acta 851:151–5

    CAS  Google Scholar 

  • Cobbett SC (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–32

    PubMed  CAS  Google Scholar 

  • Cornic G (1994) Drought stress and high light effect on photosynthesis. In: Baker NR, Boyer JR (eds) Photoinhibition of photosynthesis, Oxford Bios Scientific Publishers pp. 297–313

    Google Scholar 

  • Costa H, Gallego SM, Tomaro ML (2002) Effect of UV-B radiation on antioxidant defense system in sunflower cotyledons Plant Sci 162:939–45

    CAS  Google Scholar 

  • Crawford NM (1995) Nitrate: nutrient and signal for plant growth. Plant Cell 7:859–68

    PubMed  CAS  Google Scholar 

  • Debel K, Sierralta WD, Braun HP, Schmitz UK, Kloppstech K (1997) The 23 kDa light stress regulated heat shock protein of Chenopodium rubrum L. is located in the mitochondria. Planta 201:326–33

    PubMed  CAS  Google Scholar 

  • Deo PM, Biswal B (2001) Response of senescing cotyledons of clusterbean to water stress in moderate and low light: possible photoprotective role of ß-carotene. Physiol Plant 112:47–54

    PubMed  CAS  Google Scholar 

  • Domínguez-Solís, JR, Gutiérrez-Alcalá G, Vega JM, Romero LC, Gotor C (2001) The cytosolic O- acetylserine (thiol) lyase gene is regulated by heavy metals and can function in cadmium tolerance. J Biol Chem 276:9297–9302

    PubMed  Google Scholar 

  • Durnford DG, Falkowski PG (1997) Chloroplast redox regulation of nuclear gene transcription during photoacclimation. Photosynth Res 53:229–41

    CAS  Google Scholar 

  • Emes MJ, Tobin AK (1993) Control of metabolism and development in higher plant plastids. Int Rev Cytol. 145:149–216

    CAS  Google Scholar 

  • Feng L, Wang K, Li Y, Tan Y, Kong J, Li H, Li Y, Zhu Y (2007) Overexpression of SBPase enhances photosynthesis against high temperature stress in transgenic rice plants. Plant Cell Rep 26:1635–1646

    PubMed  CAS  Google Scholar 

  • Foyer CH, Lopez-Delgado H, Dat JF, Scott IM (1997) Hydrogen peroxide and glutathione-associated mechanisms of acclimatory stress tolerance and signaling. Physiol Plant 100:241–54

    CAS  Google Scholar 

  • Friso G, Barbato R, Giacometti GM, Barbar J (1994a) Degradation of D2 protein due to UV-B irradiation of the reaction centre of PS II. FEBS Lett 339:217–21

    PubMed  CAS  Google Scholar 

  • Friso G, Spetea C, Giacometti GM, Vass I, Barbato R (1994b) Degradation of photosystem II reaction centre D1 protein induced by UV-B radiation in isolated thylakoids. Identification and characterization C and N terminal breakdown product. Biochim Biophys Acta 1184:78–84

    CAS  Google Scholar 

  • Giardi MT, Cona A, Geiken B, Kucera T, Masojidek J, Mattoo AK (1996) Long term drought stress induces structural and functional reorganisation of photosystem II. Planta 199:118–25

    CAS  Google Scholar 

  • Godde D, Hefer M (1994) Photoinhibition and light dependent turnover of D1 reaction centre polypeptide of PSII are enhanced by mineral stress conditions. Planta 193:290–9

    CAS  Google Scholar 

  • Graan T, Boyer JS (1990) Very high CO2 partially restores photosynthesis in sunflower at low water potentials. Planta 181:378–84

    CAS  Google Scholar 

  • Grill D, Tausz M, De Kok LJ (2001) Significance of glutathione to plant adaptation to the environment. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Gutierrez-Marcos JF, Roberts MA, Campbell EI, Wray JL (1996) Three members of a novel small gene-family from Arabidopsis thaliana able to complement functionally an Escherichiacoli mutant defective in PAPS reductase activity encode proteins with a thioredoxin-like domain and ‘APS reductase’ activity. Proc Natl Acad Sci USA 93:13377–82

    PubMed  CAS  Google Scholar 

  • Harada E, Yamaguchi Y, Koizumi N, Sano H (2002) Cadmium stress induces production of thiol compounds and transcripts for enzymes involved in sulfur assimilation pathways in Arabidopsis. J Plant Physiol 159:445–8

    CAS  Google Scholar 

  • Hawkesford MJ, De Kok LJ (2006) Managing sulfur metabolism in plants. Plant Cell Environ 29:382–95

    PubMed  CAS  Google Scholar 

  • He JX, Wang L, Liang H (1995) Effects of water stress on photochemical function and protein metabolism of photosystem II in wheat leaves. Physiol Plant 93:771–7

    CAS  Google Scholar 

  • Irihimovitch V, Shapira M (2000) Glutathione redox potential modulated by reactive oxygen species regulates translation of Rubisco large subunit in the chloroplast. J Biol Chem 275:16289–95

    PubMed  CAS  Google Scholar 

  • Iturbe-Ormataexe I, Escuredo PR, Arresse-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol. 111:1145–52

    Google Scholar 

  • Jansen MAK, Gaba V, Greenberg B (1998) Higher plants and UV-B radiation: balancing damage, repair and acclimation, Trends Plant Sci 3:131–5

    Google Scholar 

  • Jansen MAK, Babu TS, Heller D, Gaba V, Mattoo AK, Edelman M (1996) Ultraviolet-B effect on Spirodela oligorrhiza: induction of different protection mechanisms. Plant Sci 115:217–23

    CAS  Google Scholar 

  • Jegerschold C, Styring S (1996) Spectroscopic characterisation of intermediate steps involved in donor side induced photoinhibition of photosystem II. Biochemistry 35:7794–7801

    PubMed  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and up-regulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–10

    PubMed  CAS  Google Scholar 

  • Jordan BR (1996) The effects of ultraviolet-B radiation on plants: a molecular perspective. Adv Bot Res 22:97–162

    CAS  Google Scholar 

  • Jordan BR, He J, Chow WS, Anderson JM (1992) Changes in the mRNA levels and polypeptide subunits of rebulose-1, 5-biphosphate carboxylase in response to UV-B radiation. Plant Cell Environ 15:91–8

    CAS  Google Scholar 

  • Keren N, Berg A, van Kan PJM, Levanon H, Ohad I (1997) Mechanism of photosystem II photoinactivation and D1 protein degradation at low light: the role of back electron flow. Proc Natl Acad Sci USA 94:1579–84

    PubMed  CAS  Google Scholar 

  • Kessler D, Papenbrock J (2005) Iron–sulfur cluster biosynthesis in photosynthetic organisms. Photosynth Res 86:391–407

    PubMed  CAS  Google Scholar 

  • Knight S, Andersson I, Branden CI (1990) Crystallographic analysis of ribulose 1, 5-bisphosphate carboxylase from spinach at 2.4 Ã… resolution. Subunit interactions and active site. J Mol Biol 215:113–60

    PubMed  CAS  Google Scholar 

  • Kocsy G, Brunner M, Ruegsegger A, Stamp P, Brunold C (1996) Gluotathione synthesis in maize genotypes with different sensitivities to chilling. Planta 198:365–70

    CAS  Google Scholar 

  • Kopriva S, Rennenberg H (2004) Control of sulphate assimilation and glutathione synthesis: interaction with C and N metabolism. J Exp Bot 55:1831–42

    PubMed  CAS  Google Scholar 

  • Koprivova A, Suter M, op den Camp R, Brunold C, Kopriva S (2000) Regulation and sulfate assimilation by nitrogen in Arabidopsis. Plant Physiol 122:737–46

    PubMed  CAS  Google Scholar 

  • Kunert KJ and Foyer CH (1994) Thiol/disulphide exchange in plants. In: De Kok LJ, Stulen I, Rennenberg H, Brunhold C, Rausen W (eds), Sulfur nutrition and assimilation in higher plants: regulatory, agricultural and environmental aspects, SPB Academic Publishers, The Hague, pp. 132–64

    Google Scholar 

  • Lam HM, Coschigano K, Schultz C, Melo-Oliveira R, Tjaden G, Oliveira I, Ngai N, Hsieh MH, Coruzzi G (1995) Use of Arabidopsis mutants and genes to study amide amino acid biosynthesis. Plant Cell 7:887–98

    PubMed  CAS  Google Scholar 

  • Landry LG, Chapple CCS, Last RL (1995) Arabidopsis mutants lacking phenolic sunscreens exhibit enhanced ultraviolet-B injury and oxidative damage. Plant Physiol 109:1159–66

    PubMed  CAS  Google Scholar 

  • Lauer MJ, Boyer JS (1992) Internal CO2 measure directly in leaves: abscisic acid and low leaf water potential cause opposing effects. Plant Physiol 98:1010–16

    Google Scholar 

  • Law RD, Crafts-Brandner SJ, Salvucci ME (2001) Heat stress induces the synthesis of a new form of ribulose-1, 5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta 214:117–25

    PubMed  CAS  Google Scholar 

  • Lee BH, Won SH, Lee HS, Miyao M, Clung WI, Kim IJ, Jo J (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245:283–90

    PubMed  CAS  Google Scholar 

  • Lee SH, Ahsan N, Lee KW, Kim DH, Lee DG, Kwak SS, Kwon SY, Kim TH, Lee BH (2007) Simultaneous over expression of both CuZn SOD and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. J Plant Physiol 164:1626–1638

    PubMed  CAS  Google Scholar 

  • Lee YP, Kim SH, Bang JW, Lee HS, Kwak SS, Kwon SY (2007) Enhanced tolerance to oxidative stress in transgenic tobacco plants expressing three antioxidant enzymes in chloroplasts. Plant Cell Rep 26:591–8

    PubMed  CAS  Google Scholar 

  • Leon S, Touraine B, Ribot C, Briat JF, Lobreaux S (2003) Iron–sulphur cluster assembly in plants: distinct NFU proteins in mitochondria and plastids from Arabidopsis thaliana. Biochem J 371:823–30

    PubMed  CAS  Google Scholar 

  • Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Annu Rev Plant Physiol Plant Mol Biol 51:141–65

    PubMed  CAS  Google Scholar 

  • Lezhneva L, Amann K, Meurer J (2004) The universally conserved HCF101 protein is involved in assembly of [4Fe–4S]-cluster-containing complexes in Arabidopsis thaliana chloroplasts. Plant J 37:174–85

    PubMed  CAS  Google Scholar 

  • Li, G, Mao H, Ruan X, Xu Q, Gong Y, Zhang X, Zhao N (2002) Association of heat-induced conformational change with activity loss of Rubisco. Biochem Biophys Res Commun 290:1128–32

    PubMed  CAS  Google Scholar 

  • Link G (2003) Redox regulation of chloroplast transcription. Anti-oxidant Redox Signal 5:79–87

    CAS  Google Scholar 

  • Lu C, Zhang J (1998) Effects of water stress on photosynthesis, chlorophyll fluorescence and photoinhibition in wheat plants. Austr J Plant Physiol 25:883–92

    CAS  Google Scholar 

  • Mahan JR, Wanjura DF (2005) Seasonal patterns of glutathione and ascorbate metabolism in field-grown cotton under water Stress. Crop Sci 45:193–201

    CAS  Google Scholar 

  • McKenzie RL, Bjorn LO, Bais A, Ilyasd M (2003) Changes in biologically active ultraviolet radiation reaching the Earth’s surface. Photochem. Photobiol Sci 2:5–15

    CAS  Google Scholar 

  • McKersie BD, Bowley S, Harjanto E, Leprince O (1996) Water-deficit tolerance and field performance of transgenic alfalfa overexpressing superoxide dismutase. Plant Physiol 111:1177–81

    PubMed  CAS  Google Scholar 

  • Melis A, Chen HC (2005) Chloroplast sulfate transport in green algae: genes, proteins and effects. Photosynth Res 86:299–307

    PubMed  CAS  Google Scholar 

  • Mendoza-Cozatl D, Loza-Tavera H, Hernandez-Navarro A, Moreno-Sanchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, protests and plants. FEMS Microbiol Rev 29:653–71

    PubMed  CAS  Google Scholar 

  • Miyake C, Asada K (1992) Thylakoid-bound ascorbate peroxidase in spinach chloroplasts and photoreduction of its primary oxidation product monodehydroascorbate radicals in thylakoids. Plant Cell Physiol 33:541–53

    CAS  Google Scholar 

  • Mullineaux PM, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–8

    PubMed  CAS  Google Scholar 

  • Mullineaux PM, Rausch T (2005) Glutathione, photosynthesis and the redox regulation of stress-responsive gene expression. Photosynth Res 86:459–74

    PubMed  CAS  Google Scholar 

  • Ogawa K, Kanematsu S, Takabe K, Asada K (1995) Attachment of CuZn-superoxide dismutase to thylakoid membranes at the site of superoxide generation (PS I) in spinach chloroplast:detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36:565–73

    CAS  Google Scholar 

  • Okane D, Gill V, Byod P, Burdon R (1996) Chilling oxidative stress and antioxidant responses in Arabidopsis thaliana Callus. Planta 198:371–7

    CAS  Google Scholar 

  • Okanenko A, Taran N (1998). Impact of heat stress on cereal lipid composition. In: De Kok LJ, Stulen I (eds), Responses of plant metabolism in air pollution and global change, Backhuys Publishers, Leiden, pp. 391–4

    Google Scholar 

  • Pastori GM, Trippi VS (1992) Oxidative stress induces high rate of glutathione reductase synthesis in drought resistant maize strain. Plant Cell Physiol 33:957–61

    CAS  Google Scholar 

  • Pfundel EE, Pan RS, Dilley A (1992) Inhibition of violaxanthin deepoxidation by UV- B radiation in isolated chloroplasts and intact leaves. Plant Physiol 98:1372–80

    PubMed  Google Scholar 

  • Phee BK, Cho JH, Park S, Jung JH, Lee YH, Jeon JS, Bhoo SH, Hahn TR (2004) Proteomic analysis of the response of Arabidopsis chloroplast proteins to high light stress. Proteomics 4:3560–8

    PubMed  CAS  Google Scholar 

  • Pickering IJ, Prince RC, George MJ, Smith RD, George GN, Salt DE (2000) Reduction and coordination of arsenic in Indian mustard. Plant Physiol 122:1171–7

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Hwang S, Lytle CM, Zhu Y, Tai JC, Bravo RC, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurase in Indian mustard leads to increased selenate uptake, reduction and tolerance. Plant Physiol 119:123–32

    PubMed  CAS  Google Scholar 

  • Pilon-Smits EAH, Pilon M (2006) Sulfur metabolism in plastids. In: Wise RR, Hoober JK (eds), The Structure and function of plastids, Springer, The Netherlands, pp 387–402

    Google Scholar 

  • Raines CA, Lloyd JC, Dyer TA (1999) New insights into the structure and function of sedoheptulose-1, 7-bisphosphatase; an important but neglected Calvin cycle enzyme. J Exp Bot 50:1–8

    CAS  Google Scholar 

  • Ramachandra Reddy A, Chaitanva KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher palnts. J Plant Physiol 161:1189–1202

    PubMed  Google Scholar 

  • Rao MV, Ormrod DP (1995) Impact of UVB and O3 on the oxygen free radical scavenging system in Arabidopsis thaliana genotypes differing in flavonoid biosynthesis. Photochem Photobiol 62:719–26

    CAS  Google Scholar 

  • Rao MV, Paliyath G, Ormrod DP (1996) Ultraviolet-B and ozone induced biochemical changes in antioxidant enzymes in Arabidopsis thaliana. Plant Physiol 110:125–36

    PubMed  CAS  Google Scholar 

  • Reuveny Z, Dougall DK, Trinity PM (1980) Regulatory coupling of nitrate and sulfate assimilation pathways in cultured tobacco cells. Proc Natl Acad Sci USA 77:6670–2

    PubMed  CAS  Google Scholar 

  • Sailaja MV, Ramadas VS (1995) Photosystem II acclimation to limiting growth light in fully developed leaves of Amaranthus hypochondriacus L. and NAD-ME C4 plant. Photosynth Res 46:227–33

    CAS  Google Scholar 

  • Salin ML 1987. Toxic oxygen species and protective systems of the chloroplasts. Plant Physiol 72:681–9

    Google Scholar 

  • Salvucci ME, Ogren WL (1996) The mechanism of Rubisco activase: insight from studies of the properties and structure of the enzyme. Photosynth Res 47:1–11

    CAS  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–64

    PubMed  CAS  Google Scholar 

  • Schung, E. (1998) Sulfur in agroecosystems. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Schroda M, Vallon O, Wollman FA, Beck CF (1999) A chloroplast-targeted heat shock protein 70 (HSP70) contributes to the photoprotection and repair of photosystem II during and after photoinhibition. Plant Cell 11:1165–78

    PubMed  CAS  Google Scholar 

  • Shapira M, Lers A, Heifetz PB, Irihimovitz V, Osmond CB, Gillham NW, Boynton JE (1997) Differential regulation of chloroplast gene expression in Chlamydomonas reinhardtii during photoacclimation: light stress transiently suppresses synthesis of Rubisco LSU protein while enhancing synthesis of the PSII D1 protein. Plant Mol Biol 33:1001–11

    PubMed  CAS  Google Scholar 

  • Sigrist M, Zwillenberg C, Giroud Ch, Eichenberger W, Boschetti A (1988) Sulfolipid associated with the light-harvesting complex associated with photosystem II apoproteins of Chlamydomonas reinhardii. Plant Sci 58:15–23

    CAS  Google Scholar 

  • Sonoike K (1996) Photoinhibition of photosystem I: its physiological significance in the chilling sensitivity of plants. Plant Cell Physiol 37:239–47

    CAS  Google Scholar 

  • Sonoike K, Kamo M, Hihara Y, Hiyama T, Enami I (1997) The mechanism of the degradation of psaB gene product, one of the photosynthetic reaction center subunits of photosystem I, upon photoinhibition. Photosynth Res 53:55–63

    CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) RUBISCO: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Physiol Plant Mol Biol 53:449–75

    CAS  Google Scholar 

  • Srivalli B, Sharma G, Khanna-Chopra R (2003) Antioxidative defense system in an upland rice cultivar subjected to increasing intensity of water stress followed by recovery. Physiol Plant 119:503–12

    CAS  Google Scholar 

  • Stöckel J, Oelmüller R (2004) A novel protein for Photosystem I biogenesis. J Biol Chem 279:10243–251

    PubMed  Google Scholar 

  • Sundby C, Harndahl U, Gustavsson N, Ahrman E, Murphy D (2005) Conserved methionines in chloroplasts. Biochim Biophys Acta 1703:191–202

    PubMed  CAS  Google Scholar 

  • Taiz L, Zeiger E (1998) Plant Physiology, 2nd ed. The Benjamin/Cummings Publication Co Inc, California

    Google Scholar 

  • Takahashi H, Watanabe-Takahashi A, Smith FW, Blake-Kalff M, Hawkesford MJ, Saito K (2000) The roles of three functional sulphate transporters involved in uptake and translocation of sulphate in Arabidopsis thaliana. Plant J 23:171–82

    PubMed  CAS  Google Scholar 

  • Takeuchi Y, Murakami M, Nakajima N, Kondo N, Nikaido O (1996) Induction and repair of damage to DNA in cucumber cotyledons irradiated with UV-B. Plant Cell Physiol 37:181–7

    CAS  Google Scholar 

  • Tausz M, Helena S, Grill D (2004) The glutathione system as a stress marker in plant ecophysiology: is a stress response concept valid. J Exp Bot 55:1955–62

    PubMed  CAS  Google Scholar 

  • Teramura AH, Ziska LH (1996) In: Baker NR(ed) Photosynthesis and environment, Kluwer Academic publishers, The Netherlands, pp. 435–50

    Google Scholar 

  • Terashima I, Funayama S, Sonoike K (1994) The site of photoinhibition in leaves of Cucumis sativus L. at low temperatures is photosystem I, not photosytem II. Planta 193:300–6

    CAS  Google Scholar 

  • Toivonen P, Vidaver W (1988) Variable chlorophyll a fluorescence and CO2 uptake in water stressed white spruce seedlings. Plant Physiol 86:744–8

    PubMed  CAS  Google Scholar 

  • Touraine B, Boutin JP, Marion-Poll A, Briat JF, Peltier G, Lobreaux S (2004) Nfu2: a scaffold protein required for [4Fe–4S] and ferredoxin iron–sulphur cluster assembly in Arabidopsis chloroplasts. Plant J 40:101–11

    PubMed  CAS  Google Scholar 

  • Vani B, Saradhi, PP, Mohanty P (2001) Characterization of high temperature induced stress impairments in thylakoids of rice seedlings. Indian J Biochem Biophys 38:220–9

    PubMed  CAS  Google Scholar 

  • Vasilikiotis C, Melis A (1994) Photosystem II reaction center damage and repair cycle: chloroplast acclimation strategy to irradiance stress. Proc Natl Acad Sci USA 91: 7222–6

    PubMed  CAS  Google Scholar 

  • Xu XM, Moller SG (2004) AtNAP7 is a plastidic SufC-like ATP-binding cassette/ATPase essential for Arabidopsis embryogenesis. Proc Natl Acad Sci USA 101: 9143–8

    PubMed  CAS  Google Scholar 

  • Yabe T, Morimoto K, Kikuchi S, Nishio K, Terashima I, Nakai M (2004) The Arabidopsis chloroplastic NifU-like protein CnfU, which can act as an iron-sulfur cluster scaffold protein, is required for biogenesis of ferredoxin and Photosystem I. Plant Cell 16:993–1007

    PubMed  CAS  Google Scholar 

  • Yamaguchi Y, Nakamura T, Harada E, Koizumi N, Sano H (1999) Differential accumulation of transcripts encoding sulfur assimilation enzymes upon sulfur and/or nitrogen deprivation in Arabidopsis thaliana. Biosci Biotechnol Biochem 63:762–6

    PubMed  CAS  Google Scholar 

  • Yu B, Benning C (2003) Anionic lipids are required for chloroplast structure and function in Arabidopsis. Plant J 36:762–70

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biswal, B., Raval, M.K., Biswal, U.C., Joshi, P. (2008). Response of Photosynthetic Organelles to Abiotic Stress: Modulation by Sulfur Metabolism. In: Khan, N.A., Singh, S., Umar, S. (eds) Sulfur Assimilation and Abiotic Stress in Plants. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76326-0_8

Download citation

Publish with us

Policies and ethics