Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4726))

Included in the following conference series:

Abstract

The Longest Common Subsequence (LCS) is a well studied problem, having a wide range of implementations. Its motivation is in comparing strings. It has long been of interest to devise a similar measure for comparing higher dimensional objects, and more complex structures. In this paper we give, what is to our knowledge, the first inherently multi-dimensional definition of LCS. We discuss the Longest Common Substructure of two matrices and the Longest Common Subtree problem for multiple trees including a constrained version. Both problems cannot be solved by a natural extension of the original LCS solution. We investigate the tractability of the above problems. For the first we prove \(\cal{NP}\)-Completeness. For the latter \(\cal{NP}\)-hardness holds for two general unordered trees and for k trees in the constrained LCS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amir, A., Landau, G.M.: Fast Parallel and Serial Multidimensional Aproximate Array Matching. Theor. Comput. Sci. 81(1), 97–115 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Baeza-Yates, R.: Similarity in Two-dimensional strings. In: Hsu, W.-L., Kao, M.-Y. (eds.) COCOON 1998. LNCS, vol. 1449, pp. 319–328. Springer, Heidelberg (1998)

    Google Scholar 

  3. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence algorithms. In: SPIRE 2000, pp. 39–48 (2000)

    Google Scholar 

  4. Bille, P.: A Survey on Tree Edit Distance and Related Problems. TCS 337(1-3), 217–239 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Branden, C., Tooze, J.: Introduction to Protein Structure. Garland Publishing, New York (1999)

    Google Scholar 

  6. Demaine, E., Mozes, S., Rossman, B., Weimann, O.: An O(n3)-time algorithm for tree edit distance (submitted)

    Google Scholar 

  7. Farach, M., Przytycka, T.M., Thorup, M.: The Maximum Agreement Subtree Problem for Binary Trees. In: Proc. of the second ESA (1995)

    Google Scholar 

  8. Hirschberg, D.S.: space algorithm for Computing Maximal Common Subsequences. Commun. ACM 18(6), 341–343 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kilpelinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM Journal on Computing 24(2), 340–356 (1995)

    Article  MathSciNet  Google Scholar 

  10. Klein, P.N.: Computing the edit distance between unrooted ordered trees. In: ESA 1998, pp. 91–102 (1998)

    Google Scholar 

  11. Kilpelinen, P., Mannila, H.: Ordered and unordered tree inclusion. SIAM Journal on Computing 24(2), 340–356 (1995)

    Article  MathSciNet  Google Scholar 

  12. Krithivasan, K., Sitalakshmi, R.: Efficient two-dimensional pattern matching in the presence of errors. Informatio Sciences 43(3), 169–184 (1987)

    Article  Google Scholar 

  13. Pinter, R.Y., Rokhlenko, O., Tsur, D., Ziv-Ukelson, M.: Approximate labelled subtree homeomorphism. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U. (eds.) CPM 2004. LNCS, vol. 3109, pp. 59–73. Springer, Heidelberg (2004)

    Google Scholar 

  14. Richter, T.: A new algorithm for the ordered tree inclusion problem. In: Hein, J., Apostolico, A. (eds.) Combinatorial Pattern Matching. LNCS, vol. 1264, pp. 150–166. Springer, Heidelberg (1997)

    Google Scholar 

  15. Shapiro, B.A., Zhang, K.Z.: Comparing multiple RNA secondary structures using tree comparisons. Computer Applications in the Biosciences 6(4), 309–318 (1990)

    Google Scholar 

  16. Shasha, D., Zhang, K.: Simple Fast Algorithms for the Editing Distance Between Trees and Related Problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Takahashi, Y., Satoh, Y., Suzuki, H., Sasaki, S.: Recognition of largest common structural fragment among a variety of chemical structures. Analytical sciences 3, 23–28 (1987)

    Google Scholar 

  18. Valiente, G.: Constrained tree inclusion. J. Discrete Algorithms 3(2-4), 431–447 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21, 168–173 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  20. Zhang, K.: Algorithm for the constrained editing problem between ordered labeled trees and related problems. Pattern Recognition 28, 463–478 (1995)

    Article  Google Scholar 

  21. Zhang, K.: A Constrained Edit Distance Between Unordered Labeled Trees. Algorithmica 15(3), 205–222 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Nivio Ziviani Ricardo Baeza-Yates

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Amir, A., Hartman, T., Kapah, O., Shalom, B.R., Tsur, D. (2007). Generalized LCS. In: Ziviani, N., Baeza-Yates, R. (eds) String Processing and Information Retrieval. SPIRE 2007. Lecture Notes in Computer Science, vol 4726. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75530-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75530-2_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75529-6

  • Online ISBN: 978-3-540-75530-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics