Skip to main content

Abstract

The name “uvea” is derived from the Latin uva, or grape as the eye, peeled of sclera hanging on the “stalk” of the optic nerve, reminded early anatomists of a black grape. The uvea, the middle coat of the eye, consists of a highly pigmented vascular layer composed of heterogeneous types of mesenchymal cells including fibroblasts, melanocytes, and vascular supporting cells that arise mostly from the neural crest (mesectoderm) but also from the mesoderm, including vascular endothelial cells. The uveal tract is divided into three distinct portions: the iris, the ciliary body, and the choroid. It performs several functions: the anterior uvea, the iris, is the “diaphragm” of the eye, regulating light that enters the eye through the pupil. The middle portion, the ciliary body, is essential for lens accommodation and aqueous humor formation. The most posterior, and largest, portion of the uvea, the choroid, provides nourishment for the outer retina, especially in the region of the macula, and regulates ocular temperature. Microvessels in the uveal tract bear basic similarities to the capillaries or vasculature of other tissues and organs and have a similar ultrastructure and organization, although the lumen of choriocapillaris vessels is of unusually wide caliber compared to other capillary beds. However, the capillaries in the ciliary processes are large and fenestrated as are those in the choriocapillaris, whereas in other zones of the uveal tract (iris, ciliary body stroma), the capillaries are non-fenestrated. There are no lymphatics in the mammalian uveal tract; however, the uveal tract is richly endowed with populations of immune cells including macrophages, dendritic cells, and connective mast cells. Understanding the phenotype, distribution, and function of these key resident players in immune regulation is critical to unraveling the complex nature of the variety of intraocular inflammatory responses. The biology of these cells in the uvea is described in chapter 3 and detailed reviews are available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Allen DM, Hallows TE (1997) Solar pruning of retinal rods in albino rainbow trout. Vis Neurosci 14:589–600

    Article  CAS  PubMed  Google Scholar 

  2. Alliot F, Godin I, Pessac B (1999) Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 117:145–152

    Article  CAS  PubMed  Google Scholar 

  3. Ambati J, Ambati BK, Yoo SH, Ianchulev S, Adamis AP (2003) Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. Surv Ophthalmol 48:257–293

    Article  PubMed  Google Scholar 

  4. Berson DM (2003) Strange vision: ganglion cells as circadian photoreceptors. Trends Neurosci 26:314–320

    Article  CAS  PubMed  Google Scholar 

  5. Bill A, Sperber GO (1990) Control of retinal and choroidal blood flow. Eye 4:319–325

    Article  PubMed  Google Scholar 

  6. Braekevelt CR (1985) Further observations on the presence of wandering phagocytes within the teleostean retina. Anat Anz 160:45–54

    CAS  PubMed  Google Scholar 

  7. Bron AJ, Tripathi RC, Tripathi BJ, Wolff E (1997) Wolff’s anatomy of the eye and orbit. Chapman & Hall Medical, London/New York

    Google Scholar 

  8. Butler TL, McMenamin PG (1996) Resident and infiltrating immune cells in the uveal tract in the early and late stages of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 37:2195–2210

    CAS  PubMed  Google Scholar 

  9. Camelo S, Kezic J, McMenamin PG (2005) Anterior Chamber Associated Immune Deviation: a review of the anatomical evidence for the afferent arm of this unusual experimental model of ocular immune responses. Clin Experiment Ophthalmol 33:426–432

    Article  PubMed  Google Scholar 

  10. Caspi RR (2006) Ocular autoimmunity: the price of privilege? Immunol Rev 213:23–35

    Article  PubMed  Google Scholar 

  11. Castellano CG, Stinnett SS, Mettu PS et al (2009) Retinal thickening in iridocyclitis. Am J Ophthalmol 148:341–349

    Article  PubMed  Google Scholar 

  12. Cavallotti C, Balacco Gabrieli C, Feher J (2005) The human choriocapillaris: evidence for intrinsic regulation of the endothelium. J Anat 206:243–247

    Article  PubMed Central  PubMed  Google Scholar 

  13. Chang JH, McCluskey P, Wakefield D (2004) Expression of toll-like receptor 4 and its associated lipopolysaccharide receptor complex by resident antigen-presenting cells in the human uvea. Invest Ophthalmol Vis Sci 45:1871–1878

    Article  PubMed  Google Scholar 

  14. Chen L, Yang P, Kijlstra A (2002) Distribution, markers, and functions of retinal microglia. Ocul Immunol Inflamm 10:27–39

    Article  PubMed  Google Scholar 

  15. Coca-Prados M, Escribano J (2007) New perspectives in aqueous humor secretion and in glaucoma: the ciliary body as a multifunctional neuroendocrine gland. Prog Retin Eye Res 26:239–262

    Article  CAS  PubMed  Google Scholar 

  16. Combadiere C, Feumi C, Raoul W et al (2007) CX3CR1-dependent subretinal microglia cell accumulation is associated with cardinal features of age-related macular degeneration. J Clin Invest 117:2920–2928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Cuenca N, Kolb H (1998) Circuitry and role of substance P-immunoreactive neurons in the primate retina. J Comp Neurol 393:439–456

    Article  CAS  PubMed  Google Scholar 

  18. Curcio CA, Allen KA (1990) Topography of ganglion cells in human retina. J Comp Neurol 300:5–25

    Article  CAS  PubMed  Google Scholar 

  19. Curcio CA, Sloan KR, Kalina RE, Hendrickson AE (1990) Human photoreceptor topography. J Comp Neurol 292:497–523

    Article  CAS  PubMed  Google Scholar 

  20. De Stefano ME, Mugnaini E (1997) Fine structure of the choroidal coat of the avian eye. Lymphatic vessels. Invest Ophthalmol Vis Sci 38:1241–1260

    PubMed  Google Scholar 

  21. Do MT, Yau KW (2010) Intrinsically photosensitive retinal ganglion cells. Physiol Rev 90:1547–1581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Dullforce PA, Garman KL, Seitz GW et al (2004) APCs in the anterior uveal tract do not migrate to draining lymph nodes. J Immunol 172:6701–6708

    Article  CAS  PubMed  Google Scholar 

  23. Ferreira Filho N, Nogueira J (2008) Bases morfofuncionais do aparelho da visão. In: Alves MR (ed) Bases da Oftalmologia Série Oftalmologia Brasileira. Guanabara Koogan, Rio de Janeiro, pp 3–86

    Google Scholar 

  24. Flammer J, Mozaffarieh M (2008) Autoregulation, a balancing act between supply and demand. Can J Ophthalmol 43:317–321

    Article  PubMed  Google Scholar 

  25. Flügel-Koch C, May CA, Lütjen-Drecoll E (1996) Presence of a contractile cell network in the human choroid. Ophthalmologica 210:296–302

    Article  PubMed  Google Scholar 

  26. Forrester JV, Lumsden L, Duncan L, Dick AD (2005) Choroidal dendritic cells require activation to present antigen and resident choroidal macrophages potentiate this response. Br J Ophthalmol 89:369–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Forrester JV, McMenamin PG, Holthouse I, Lumsden L, Liversidge J (1994) Localisation and characterisation of MHC class II positive cells in the iris, ciliary body, and choroid: implications for induction of autoimmune uveoretinitis. Invest Ophthalmol Vis Sci 35:64–77

    CAS  PubMed  Google Scholar 

  28. Forrester JV, Xu H, Kuffova L, Dick AD, McMenamin PG (2010) Dendritic cell physiology and function in the eye. Immunol Rev 234:282–304

    Article  CAS  PubMed  Google Scholar 

  29. Foulds WS (1990) The choroidal circulation and retinal metabolism: an overview. Eye 4(18):243–248

    Article  PubMed  Google Scholar 

  30. Freddo TF (1996) Ultrastructure of the iris. Microsc Res Tech 33:369–389

    Article  CAS  PubMed  Google Scholar 

  31. Futter CE (2006) The molecular regulation of organelle transport in mammalian retinal pigment epithelial cells. Pigment Cell Res 19:104–111

    Article  CAS  PubMed  Google Scholar 

  32. Garron LK (1963) The ultrastructure of the retinal pigment epithelium with observations on the choriocapillaris and Bruch’s membrane. Trans Am Ophthalmol Soc 61:545–588

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Ginhoux F, Greter M, Leboeuf M et al (2010) Fate mapping analysis reveals that adult microglia derive from primitive macrophages. Science 330:841–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Gonzalez-Fernandez F (2003) Interphotoreceptor retinoid-binding protein: an old gene for new eyes. Vision Res 43:3021–3036

    Article  CAS  PubMed  Google Scholar 

  35. Grierson I, Lee WR, Abraham S (1997) The effects of topical pilocarpine on the morphology of the outflow apparatus of the baboon (Papio cynocephalus). Invest Ophthalmol Vis Sci 18:346–355

    Google Scholar 

  36. Grierson I, Pfeifer N, Cracknell FPB, Appleton P (2002) Histology and fine structure of the iris and outflow system following latanoprost therapy. Surv Ophthalmol 47(Suppl 1):S176–S184

    Article  PubMed  Google Scholar 

  37. Gupta N, Brown KE, Milam AH (2003) Activated microglia in human retinitis pigmentosa, late-onset retinal degeneration, and age-related macular degeneration. Exp Eye Res 76:463–471

    Article  CAS  PubMed  Google Scholar 

  38. Guymer RH, Bird AC, Hageman GS (2004) Cytoarchitecture of choroidal capillary endothelial cells. Invest Ophthalmol Vis Sci 45:1660–1666

    Article  PubMed  Google Scholar 

  39. Hayashi K, de Laey JJ (1985) Indocyanine green angiography of submacular choroidal vessels in the human eye. Ophthalmologica 190:20–29

    Article  CAS  PubMed  Google Scholar 

  40. Hayreh SS (1974) The long posterior ciliary arteries: an experimental study. Graefes Arch Clin Exp Ophthalmol 192:197–213

    Article  CAS  Google Scholar 

  41. Hayreh SS (1975) Segmental nature of the choroidal vasculature. Br J Ophthalmol 59:631–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Hayreh SS (2004) Posterior ciliary artery circulation in health and disease: the Weisenfeld lecture. Invest Ophthalmol Vis Sci 45:749–757

    Article  PubMed  Google Scholar 

  43. Hirata Y, Nishiwaki H (2006) The choroidal circulation assessed by laser-targeted angiography. Prog Retin Eye Res 25:129–147

    Article  PubMed  Google Scholar 

  44. Hogan MJ, Alvarado JA, Weddell JE (1971) Histology of the human eye; an atlas and textbook. Saunders, Philadelphia, pp 393–522

    Google Scholar 

  45. Hogan MJ, Zimmerman LE (1962) Ophthalmic pathology. WB Sauders Co, Philadelphia/London

    Google Scholar 

  46. Holland GN, Buhles WC Jr, Mastre B, Kaplan HJ (1989) A controlled retrospective study of ganciclovir treatment for cytomegalovirus retinopathy. Use of a standardized system for the assessment of disease outcome. UCLA CMV Retinopathy. Study Group. Arch Ophthalmol 107:1759–1766

    Article  CAS  PubMed  Google Scholar 

  47. Imesch PD, Wallow IH, Albert DM (1997) The color of the human eye: a review of morphologic correlates and of some conditions that affect iridial pigmentation. Surv Ophthalmol 41(Suppl 2):S117–S123

    Article  PubMed  Google Scholar 

  48. Jabs DA, Nussenblatt RB, Rosenbaum JT (2005) Standardization of uveitis nomenclature for reporting clinical data. Results of the First International Workshop. Am J Ophthalmol 140:509–516

    Article  PubMed  Google Scholar 

  49. Jiang Z, Shen W (2010) Role of neurotransmitter receptors in mediating light-evoked responses in retinal interplexiform cells. J Neurophysiol 103:924–933

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Joly S, Francke M, Ulbricht E et al (2009) Cooperative phagocytes: resident microglia and bone marrow immigrants remove dead photoreceptors in retinal lesions. Am J Pathol 174:2310–2323

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Kay JN, Voinescu PE, Chu MW, Sanes JR (2011) Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nat Neurosci 14:965–972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Ke Y, Jiang G, Sun D et al (2009) Retinal Astrocytes respond to IL-17 differently than Retinal Pigment Epithelial cells. J Leukoc Biol 86:1377–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Kezic J, McMenamin PG (2008) Differential turnover rates of monocyte-derived cells in varied ocular tissue microenvironments. J Leukoc Biol 84:721–729

    Article  CAS  PubMed  Google Scholar 

  54. Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG (2008) Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci 49:1599–1608

    Article  PubMed  Google Scholar 

  55. Koh SM (2000) VIP enhances the differentiation of retinal pigment epithelium in culture: from cAMP and pp 60(c-src) to melanogenesis and development of fluid transport capacity. Prog Retin Eye Res 19:669–688

    Article  CAS  PubMed  Google Scholar 

  56. Kolb H (2001) Glial cells of the retina. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City [updated 2007 Apr 17] available at http://www.ncbi.nlm.nih.gov/books/NBK11516

  57. Kolb H, Fernandez E, Schouten J et al (1994) Are there three types of horizontal cell in the human retina? J Comp Neurol 343:370–386

    Article  CAS  PubMed  Google Scholar 

  58. Kolb H, Linberg KA, Fisher SK (1992) Neurons of the human retina: a Golgi study. J Comp Neurol 318:147–187

    Article  CAS  PubMed  Google Scholar 

  59. Kuwabara T, Cogan DG (1960) Studies of retinal vascular patterns. I. Normal architecture. Arch Ophthalmol 64:904–911

    Article  CAS  PubMed  Google Scholar 

  60. Li Q, Fujino Y, Caspi RR, Najafian F, Nussenblatt RB, Chan CC (1992) Association between mast cells and the development of experimental autoimmune uveitis in different rat strains. Clin Immunol Immunopathol 65:294–299

    Article  CAS  PubMed  Google Scholar 

  61. Loeffler KU, Sahm M, Spitznas M (2001) Short-time application of latanoprost does not stimulate melanogenesis in bovine ocular melanin-containing cells in vitro. Ophthalmic Res 33:102–106

    Article  CAS  PubMed  Google Scholar 

  62. May CA (1999) Mast cell heterogeneity in the human uvea. Histochem Cell Biol 112:381–386

    Article  CAS  PubMed  Google Scholar 

  63. May CA (2005) Non-vascular smooth muscle cells in the human choroid: distribution, development and further characterization. J Anat 207:381–390

    Article  PubMed Central  PubMed  Google Scholar 

  64. May CA, Neuhuber W, Lutjen-Drecoll E (2004) Immunohistochemical classification and functional morphology of human choroidal ganglion cells. Invest Ophthalmol Vis Sci 45:361–367

    Article  PubMed  Google Scholar 

  65. McKechnie NM, Foulds WS (1980) Recovery of the rabbit retina after light damage (preliminary observations). Albrecht Von Graefes Arch Klin Exp Ophthalmol 212:271–283

    Article  CAS  PubMed  Google Scholar 

  66. McMenamin PG (1994) Immunocompetent cells in the anterior segment. Prog Retin Eye Res 13:555–591

    Article  Google Scholar 

  67. McMenamin PG (1997) The distribution of immune cells in the uveal tract of the normal eye. Eye 11(Pt 2):183–193

    Article  PubMed  Google Scholar 

  68. McMenamin PG (1999) Dendritic cells and macrophages in the uveal tract of the normal mouse eye. Br J Ophthalmol 83:598–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  69. McMenamin PG (1999) Subretinal macrophages in the developing eye of eutherian mammals and marsupials. Anat Embryol 200:551–558

    Article  CAS  PubMed  Google Scholar 

  70. McMenamin PG, Loffler K (1990) Cells resembling intraventricular macrophages are present in the subretinal space of human foetal eyes. Anat Rec 227:245–253

    Article  CAS  PubMed  Google Scholar 

  71. Mieziewska K (1996) The interphotoreceptor matrix, a space in sight. Microsc Res Tech 35:463–471

    Article  CAS  PubMed  Google Scholar 

  72. Miller ST, Barney NP, Gamache DA et al (1997) Secretory response of mast cells contained in monodispersed human choroidal preparations. Int Arch Allergy Immunol 114:139–143

    Article  CAS  PubMed  Google Scholar 

  73. Mochizuki M, Kuwabara T, Chan CC et al (1984) An association between susceptibility to experimental autoimmune uveitis and choroidal mast cell numbers. J Immunol 133:1699–1701

    CAS  PubMed  Google Scholar 

  74. Morgan J, Wong R (1995) Development of cell types and synaptic connections in the retina. University of Utah Health Sciences Center, Salt Lake City [updated 2007 May 29] available at http://www.ncbi.nlm.nih.gov/books/NBK11558

  75. Murata Y, Kaidoh T, Inoué T (1998) Ultrastructural changes of the myoepithelium of the dilator pupillae during miosis and mydriasis in the rat iris. Arch Histol Cytol 61:29–36

    Article  CAS  PubMed  Google Scholar 

  76. Nelson R, Connaughton V (1995) Bipolar cell pathways in the vertebrate retina. In: Kolb H, Fernandez E, Nelson R (eds) Webvision: the organization of the retina and visual system. University of Utah Health Sciences Center, Salt Lake City [updated 2012 January 20] available at http://www.ncbi.nlm.nih.gov/books/NBK11521

  77. Newman E, Reichenbach A (1996) The Muller cell: a functional element of the retina. Trends Neurosci 19:307–312

    Article  CAS  PubMed  Google Scholar 

  78. Olver JM (1990) Functional anatomy of the choroidal circulation: methyl methacrylate casting of human choroids. Eye 4:264–272

    Google Scholar 

  79. Polyak SL (1941) The retina – the anatomy and the histology of the retina in man, ape, and monkey, including the consideration of visual functions, the history of physiological optics, and the histological laboratory technique. The University of Chicago Press, Chicago, 607 p

    Google Scholar 

  80. Rao NA, Kimoto T, Zamir E et al (2003) Pathogenic role of retinal microglia in experimental uveoretinitis. Invest Ophthalmol Vis Sci 44:22–31

    Article  PubMed  Google Scholar 

  81. Raoul W, Keller N, Rodéro M et al (2008) Role of the chemokine receptor CX3CR1 in the mobilization of phagocytic retinal microglial cells. J Neuroimmunol 198:56–61

    Article  CAS  PubMed  Google Scholar 

  82. Rohen JW, Schachtschabel DO, Berghoff K (1984) Histoautoradiographic and biochemical studies on human and monkey trabecular meshwork and ciliary body in short-term explant culture. Graefes Arch Clin Exp Ophthalmol 221:199–206

    Article  CAS  PubMed  Google Scholar 

  83. Rosenbaum JT, Ronick MB, Song X, Choi D, Planck SR (2008) T cell-antigen-presenting cell interactions visualized in vivo in a model of antigen-specific inflammation. Clin Immunol 126:270–276

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. Rothova A (2007) Inflammatory cystoid macular edema. Curr Opin Ophthalmol 18:487–492

    Article  PubMed  Google Scholar 

  85. Runkle EA, Antonetti DA (2011) The blood-retinal barrier: structure and functional significance. Methods Mol Biol 686:133–148

    Article  CAS  PubMed  Google Scholar 

  86. Ruskell GL (1971) Facial parasympathetic innervation of the choroidal blood vessels in monkeys. Exp Eye Res 12:166–172

    Article  CAS  PubMed  Google Scholar 

  87. Santos AM, Martin-Oliva D, Ferrer-Martin RM et al (2010) Microglial response to light-induced photoreceptor degeneration in the mouse retina. J Comp Neurol 518:477–492

    Article  CAS  PubMed  Google Scholar 

  88. Scales DK, Fryczykowski AW, Opremak EM (1994) The choroid. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology, 2nd ed. WB Saunders Co; Basic sciences: pp 252–261

    Google Scholar 

  89. Schlaegel TF Jr (1977) Complications of uveitis. Int Ophthalmol Clin 17:65–74

    Article  PubMed  Google Scholar 

  90. Schlingemann RO, Hofman P, Klooster J et al (1998) Ciliary muscle capillaries have blood-tissue barrier characteristics. Exp Eye Res 66:747–754

    Article  CAS  PubMed  Google Scholar 

  91. Schraermeyer U, Addicks K, Kociok N et al (1998) Capillaries are present in Bruch’s membrane at the ora serrata in the human eye. Invest Ophthalmol Vis Sci 39:1076–1084

    CAS  PubMed  Google Scholar 

  92. Schraermeyer U, Kopitz J, Peters S et al (2006) Tyrosinase biosynthesis in adult mammalian retinal pigment epithelial cells. Exp Eye Res 83:315–321

    Article  CAS  PubMed  Google Scholar 

  93. Schrödl F, De Laet A, Tassignon MJ et al (2003) Intrinsic choroidal neurons in the human eye: projections, targets, and basic electrophysiological data. Invest Ophthalmol Vis Sci 44:3705–3712

    Article  PubMed  Google Scholar 

  94. Sears M (1994) Formation of aqueous humor. In: Albert DM, Jakobiec FA (eds) Principles and practice of ophthalmology, 2nd ed. WB Saunders Co; Basic sciences, Philadelphia. pp 182–206

    Google Scholar 

  95. Sigelman J, Ozanics V (1982) Retina. In: Jakobiec FA (ed) Ocular anatomy, embryology, and teratology. Harper & Row, Philadelphia, pp 441–506

    Google Scholar 

  96. Spencer LM, Foos RY, Straatsma BR (1970) Enclosed bays of the ora serrata. Relationship to retina tears. Arch Ophthalmol 83:421–425

    Article  CAS  PubMed  Google Scholar 

  97. Srinivasan VJ, Monson BK, Wojtkowski M et al (2008) Characterization of outer retinal morphology with high-speed, ultrahigh-resolution optical coherence tomography. Invest Ophthalmol Vis Sci 49:1571–1579

    Article  PubMed Central  PubMed  Google Scholar 

  98. Steptoe RJ, Holt PG, McMenamin PG (1996) Origin and steady-state turnover of major histocompatibility complex class II-positive dendritic cells and resident-tissue macrophages in the iris of the rat eye. J Neuroimmunol 68:67–76

    Article  CAS  PubMed  Google Scholar 

  99. Steptoe RJ, McMenamin PG, Holt PG (2000) Resident tissue macrophages within the normal rat iris lack immunosuppressive activity and are effective antigen-presenting cells. Ocul Immunol Inflamm 8:177–187

    Article  CAS  PubMed  Google Scholar 

  100. Steptoe RJ, McMenamin PG, McMenamin CC (1994) Choroidal mast cell dynamics during experimental autoimmune uveitis in rat strains of differing susceptibility. Ocul Immunol Inflamm 2:7–22

    Article  CAS  PubMed  Google Scholar 

  101. Stern WH, Ernest JT (1974) Microsphere occlusion of the choriocapillaris in rhesus monkeys. Am J Ophthalmol 78:438–448

    Article  CAS  PubMed  Google Scholar 

  102. Strauss O (2005) The retinal pigment epithelium in visual function. Physiol Rev 85:845–881

    Article  CAS  PubMed  Google Scholar 

  103. Takahashi K, Muraoka K, Kishi S, Shimizu K (1996) Watershed zone in the human peripheral choroid. Ophthalmology 103:336–342

    Article  CAS  PubMed  Google Scholar 

  104. Tamm ER, Flügel-Koch C, Mayer B, Lütjen-Drecoll E (1995) Nerve cells in the human ciliary muscle: ultrastructural and immunocytochemical characterization. Invest Ophthalmol Vis Sci 36:414–426

    CAS  PubMed  Google Scholar 

  105. Thanos S, Moore S, Hong Y (1996) Retinal microglia. Prog Retin Eye Res 15:331–361

    Article  Google Scholar 

  106. Torczynski E, Tso MO (1976) The architecture of the choriocapillaris at the posterior pole. Am J Ophthalmol 81:428–440

    Article  CAS  PubMed  Google Scholar 

  107. van Velthoven ME, Faber DJ, Verbraak FD et al (2007) Recent developments in optical coherence tomography for imaging the retina. Prog Retin Eye Res 26:57–77

    Article  PubMed  Google Scholar 

  108. Wang YD, Chen HB, Jin M et al (1999) Three-dimensional arrangement of collagen fibrils in human ciliary body. Ophthalmic Res 31:378–386

    Article  CAS  PubMed  Google Scholar 

  109. Witrovsky P (1982) Functional anatomy of the retina. In: Jakobiec FA (ed) Ocular anatomy, embryology, and teratology. Harper & Row, Philadelphia, pp 507–532

    Google Scholar 

  110. Wobmann PR, Fine BS (1972) The clump cells of Koganei. A light and electron microscopic study. Am J Ophthalmol 73:90–101

    Article  CAS  PubMed  Google Scholar 

  111. Xu H, Chen M, Reid DM, Forrester JV (2007) LYVE-1-positive macrophages are present in normal murine eyes. Invest Ophthalmol Vis Sci 48:2162–2171

    Article  PubMed  Google Scholar 

  112. Yamada E (1969) Some structural features of the fovea centralis in the human retina. Arch Ophthalmol 82:151–159

    Article  CAS  PubMed  Google Scholar 

  113. Zamiri P, Sugita S, Streilein JW (2007) Immunosuppressive properties of the pigmented epithelial cells and the subretinal space. Chem Immunol Allergy 92:86–93

    Article  CAS  PubMed  Google Scholar 

  114. Zeng HY, Zhu XA, Zhang C et al (2005) Identification of sequential events and factors associated with microglial activation, migration, and cytotoxicity in retinal degeneration in rd mice. Invest Ophthalmol Vis Sci 46:2992–2999

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the biologist Carla Marina Morais for the schematic artwork and digitalization of photomicrographs and Centro de Microscopia da UFMG for the electron photomicrographs of the retina.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Leonardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Leonardi, A., Vasconcelos-Santos, D.V., Nogueira, J.C., McMenamin, P.G. (2016). Anatomy. In: Zierhut, M., Pavesio, C., Ohno, S., Orefice, F., Rao, N. (eds) Intraocular Inflammation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75387-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75387-2_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75385-8

  • Online ISBN: 978-3-540-75387-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics