Skip to main content

On the Orthogonal Projection of a Belief Function

  • Conference paper
Symbolic and Quantitative Approaches to Reasoning with Uncertainty (ECSQARU 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4724))

Abstract

In this paper we study a new probability associated with any given belief function b, i.e. the orthogonal projection π[b] of b onto the probability simplex \(\mathcal P\). We provide an interpretation of π[b] in terms of a redistribution process in which the mass of each focal element is equally distributed among its subsets, establishing an interesting analogy with the pignistic transformation. We prove that orthogonal projection commutes with convex combination just as the pignistic function does, unveiling a decomposition of π[b] as convex combination of basis pignistic functions. Finally we discuss the norm of the difference between orthogonal projection and pignistic function in the case study of a quaternary frame, as a first step towards a more comprehensive picture of their relation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton (1976)

    MATH  Google Scholar 

  2. Yaghlane, A.B., Denoeux, T., Mellouli, K.: Coarsening approximations of belief functions. In: Benferhat, S., Besnard, P. (eds.) ECSQARU 2001. LNCS (LNAI), vol. 2143, pp. 362–373. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  3. Cobb, B., Shenoy, P.: On the plausibility transformation method for translating belief function models to probability models. International Journal of Approximate Reasoning 41(3), 314–330 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Denoeux, T.: Inner and outer approximation of belief structures using a hierarchical clustering approach. Int. Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 9(4), 437–460 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Denoeux, T., Yaghlane, A.B.: Approximating the combination of belief functions using the fast Moebius transform in a coarsened frame. International Journal of Approximate Reasoning 31(1-2), 77–101 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Haenni, R., Lehmann, N.: Resource bounded and anytime approximation of belief function computations. International Journal of Approximate Reasoning 31(1-2), 103–154 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, M.: Approximation algorithms and decision making in the Dempster-Shafer theory of evidence–an empirical study. International Journal of Approximate Reasoning 17, 217–237 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tessem, B.: Approximations for efficient computation in the theory of evidence. Artificial Intelligence 61(2), 315–329 (1993)

    Article  MathSciNet  Google Scholar 

  9. Lowrance, J.D., Garvey, T.D., Strat, T.M.: A framework for evidential-reasoning systems. In: American Association for Artificial Intelligence (ed.), Proceedings of the National Conference on Artificial Intelligence, pp. 896–903 (1986)

    Google Scholar 

  10. Voorbraak, F.: A computationally efficient approximation of Dempster-Shafer theory. International Journal on Man-Machine Studies 30, 525–536 (1989)

    Article  MATH  Google Scholar 

  11. Smets, P.: Belief functions versus probability functions. In: Bouchon, B., Saitta, L., Yager, R. (eds.) Uncertainty and Intelligent Systems, pp. 17–24. Springer, Heidelberg (1988)

    Chapter  Google Scholar 

  12. Ha, V., Haddawy, P.: Geometric foundations for interval-based probabilities. In: Cohn, A.G., Schubert, L., Shapiro, S.C. (eds.) KR 1998: Principles of Knowledge Representation and Reasoning, pp. 582–593. Morgan Kaufmann, San Francisco (1998)

    Google Scholar 

  13. Black, P.: An examination of belief functions and other monotone capacities. PhD dissertation, Department of Statistics, CMU, Pgh. PA 15213 (1996)

    Google Scholar 

  14. Cozman, F.G.: Calculation of posterior bounds given convex sets of prior probability measures and likelihood functions. Journal of Computational and Graphical Statistics 8(4), 824–838 (1999)

    MathSciNet  Google Scholar 

  15. Berger: Robust bayesian analysis: Sensitivity to the prior. Journal of Statistical Planning and Inference 25, 303–328 (1990)

    Google Scholar 

  16. Herron, T., Seidenfeld, T., Wasserman, L.: Divisive conditioning: further results on dilation. Philosophy of Science 64, 411–444 (1997)

    Article  MathSciNet  Google Scholar 

  17. Seidenfeld, T., Wasserman, L.: Dilation for convex sets of probabilities. Annals of Statistics 21, 1139–1154 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  18. Cuzzolin, F.: Geometry of upper probabilities. In: Proceedings of the 3rd Internation Symposium on Imprecise Probabilities and Their Applications (ISIPTA 2003) (July 2003)

    Google Scholar 

  19. Cuzzolin, F.: A geometric approach to the theory of evidence. IEEE Transactions on Systems, Man and Cybernetics part C (to appear)

    Google Scholar 

  20. Dubrovin, B., Novikov, S., Fomenko, A.: Geometria Contemporanea 3. Editori Riuniti (1989)

    Google Scholar 

  21. Chateauneuf, A., Jaffray, J.Y.: Some characterizations of lower probabilities and other monotone capacities through the use of Möbius inversion. Mathematical Social Sciences 17, 263–283 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  22. Dubois, D., Prade, H., Smets, P.: A definition of subjective possibility. International Journal of Approximate Reasoning (March 2007) (in press)

    Google Scholar 

  23. Smets, P.: Decision making in the TBM: the necessity of the pignistic transformation. International Journal of Approximate Reasoning 38(2), 133–147 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Cuzzolin, F.: Two new Bayesian approximations of belief functions based on convex geometry. IEEE Transactions on Systems, Man and Cybernetics part B (2007)

    Google Scholar 

  25. Smets, P.: The nature of the unnormalized beliefs encountered in the Transferable Belief Model. In: Proceedings of UAI 1992, San Mateo, CA, p. 292. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cuzzolin, F. (2007). On the Orthogonal Projection of a Belief Function. In: Mellouli, K. (eds) Symbolic and Quantitative Approaches to Reasoning with Uncertainty. ECSQARU 2007. Lecture Notes in Computer Science(), vol 4724. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75256-1_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75256-1_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75255-4

  • Online ISBN: 978-3-540-75256-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics