Skip to main content

A Method to Estimate the Graph Structure for a Large MRF Model

  • Conference paper
Artificial Neural Networks – ICANN 2007 (ICANN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4669))

Included in the following conference series:

Abstract

We propose a method to estimate the graph structure from data for a Markov random field (MRF) model. The method is valuable in many practical situations where the true topology is uncertain. First the similarities of the MRF variables are estimated by applying methods from information theory. Then, employing multidimensional scaling on the dissimilarity matrix obtained leads to a 2D topology estimate of the system. Finally, applying uniform thresholding on the node distances in the topology estimate gives the neighbourhood relations of the variables, hence defining the MRF graph estimate. Conditional independence properties of a MRF model are defined by the graph topology estimate thus enabling the estimation of the MRF model parameters e.g. through the pseudolikelihood estimation scheme. The proposed method is demonstrated by identifying MRF model for a telecommunications network, which can be used e.g. in analysing the effects of stochastic disturbances to the network state.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Besag, J.E.: Statistical analysis of non-lattice data. The Statistician 24(3), 179–195 (1975)

    Article  Google Scholar 

  2. Bishop, C.M.: Pattern Recognition and Machine Learning, pp. 383–393. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  3. Cover, T.M., Thomas, J.A.: Elements of Information Theory, pp. 5–21. John Wiley & Sons, Chichester (1991)

    MATH  Google Scholar 

  4. Cressie, N.A.C.: Statistics for Spatial Data, pp. 383–573. John Wiley & Sons, Inc, Chichester (1993)

    Google Scholar 

  5. Everitt, B., Rabe-Hesketh, S.: Kendall’s Library of Statistics 4. The Analysis of Proximity Data. Arnold, 11–68 (1997)

    Google Scholar 

  6. Friedman, N., Koller, D.: Being Bayesian about Network Structure: A Bayesian Approach to Structure Discovery in Bayesian Networks. Machine Learning 50, 95–126 (2003)

    Article  MATH  Google Scholar 

  7. Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)

    Article  MATH  Google Scholar 

  8. Kruskal, J.B.: Nonmetric multidimensional scaling: A numerical method. Psychometrika 29, 115–129 (1964)

    Article  MATH  Google Scholar 

  9. Kullback, S.: Information Theory and Statistics. John Wiley (1959); reprinted by Dover Publications, Inc. pp. 155–188 (1997)

    Google Scholar 

  10. MacKay, D.: Information Theory, Inference and Learning Algorithms, pp. 357–421. Cambridge Univ. Press, Cambridge (2003)

    MATH  Google Scholar 

  11. Press, W., et al.: Numerical Recipes: The Art of Scientific Computation, pp. 476–481. Cambridge Univ. Press, Cambridge (1986)

    MATH  Google Scholar 

  12. Rajala, M., Ritala, R.: Mutual Information and Multidimensional Scaling as Means to Reconstruct Network Topology. In: Proc. SICE-ICCAS pp. 1398–1403 (2006)

    Google Scholar 

  13. Rajala, M., Ritala, R.: Statistical Model Describing Networked Systems Phenomena. In: Proc. IEEE Symp. on Comp. and Comm., pp. 647–654. IEEE Computer Society Press, Los Alamitos (2006)

    Chapter  Google Scholar 

  14. Rue, H., Held, L.: Gaussian Markov Random Fields: Theory and Applications, pp. 15–83. Chapman&Hall/CRC (2005)

    Google Scholar 

  15. Schroeder, D.V.: An Introduction to Thermal Physics, pp. 220–256. Addison-Wesley, London, UK (1999)

    Google Scholar 

  16. Stuart, A., Ord, K., Arnold, S.: Kendall’s Advanced Theory of Statistics. In: Classical Inference & the Linear Model, 6th edn., vol. 2A, pp. 46–116. Oxford Univ. Press, Oxford, UK (1999)

    Google Scholar 

  17. Steyvers, M.: Multidimensional Scaling. In: Encyclopedia of Cognitive Science, Macmillan, London (2002)

    Google Scholar 

  18. Winkler, G.: Image Analysis, Random Fields and Markov Chain Monte Carlo Methods. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  19. Yang, C.N.: The Spontaneous Magnetization of a Two-Dimensional Ising Model. Physical Review 85(5), 808–816 (1952)

    Article  MATH  Google Scholar 

  20. Yeomans, J.M.: Statistical Mechanics of Phase Transitions. Oxford University Press, Oxford, UK (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Joaquim Marques de Sá Luís A. Alexandre Włodzisław Duch Danilo Mandic

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rajala, M., Ritala, R. (2007). A Method to Estimate the Graph Structure for a Large MRF Model. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D. (eds) Artificial Neural Networks – ICANN 2007. ICANN 2007. Lecture Notes in Computer Science, vol 4669. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74695-9_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74695-9_86

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74693-5

  • Online ISBN: 978-3-540-74695-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics