Skip to main content

Mechanical and Nanomechanical Properties

  • Chapter

The growing interest in nanomaterials over the past decade or so can be put down to their unique structure, characterised by grains with nanometric dimensions and by a rather high density of crystal defects, which will undoubtedly lead to quite exceptional properties. In particular, extrapolating the constitutive laws of large-grained materials down to the nanoscale leads one to expect interesting mechanical behaviour for nanomaterials. Materials can be produced with high levels of hardness, ductility, and sometimes superplasticity (see Chap. 9) at relatively low temperatures. These characteristics lead to remarkable mechanical performance and machining possibilities, by virtue of which such nanomaterials have immediate scope for technological innovation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Macroscopic Mechanical Properties

  1. T.D. Shen, C.C Koch, T.Y. Tsui, G.M. Pharr: On the elastic moduli of nanocrystalline Fe, Cu, Ni and Cu-Ni alloys prepared by mechanical milling/alloying, J. Mater. Res. 10, No. 6, 2892 (1995)

    Article  ADS  Google Scholar 

  2. M. Verdier, M. Fivel, B. Gilles: Some investigations on the effect of length scale on mechanical properties, Adv. Eng. Mat. 3, No. 8, 597-601 (2001)

    Article  Google Scholar 

  3. R.D. Mindlin: Second gradient of strain and surface tension in linear elasticity, Int. J. Sol. Struct. 1, 417-418 (1965)

    Article  Google Scholar 

  4. E. Cosserat, F. Cosserat: Théorie des corps déformables, A. Herman et Fils, Paris (1909)

    Google Scholar 

  5. J. Besson, G. Cailletaud, J.-L. Chaboche, S. Forest: Mécanique non-linéaire des matériaux, Hermes Science Publication, Paris (2001)

    MATH  Google Scholar 

  6. A.C. Eringer: Polar and Non-Local Field Theories, Continuum Physics, ed. By A.C. Eringer, Vol. IV, Academic Press (1976)

    Google Scholar 

Nanomechanical Properties: Experimentation

  1. B. Bhushan: Micro/Nanotribology, CRC Press, Florida, USA (1995)

    Google Scholar 

  2. W.C. Oliver, G.M. Pharr: J. Mater. Res. 7, 1564 (1992)

    Article  ADS  Google Scholar 

  3. D. Tabor: The Hardness of Solids, Oxford, Clarendon Press (1951)

    Google Scholar 

  4. S.I. Bulychev, V.P. Alekhin, M.Kh. Shorshorov, A.P. Ternovskii, G.D. Shnyrev: Zavod. Lab. 1137 (1975)

    Google Scholar 

  5. M.Kh. Shorshorov, S.I. Bulychev, V.P. Alekhin: Sov. Phys. Dokl. 26, 769 (1982)

    ADS  Google Scholar 

  6. I.N. Sneddon: Int. J. Eng. Sci. 3, 47 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  7. J.B. Pethica, R. Hutchings, W.C. Oliver: Philos. Mag. A 48, 593-606 (1983)

    Article  ADS  Google Scholar 

  8. M.F. Doerner, W.D. Nix: J. Mater. Res. 1, 845-851 (1986)

    Article  ADS  Google Scholar 

  9. G.M. Pharr, A. Bolshakov: J. Mater. Res. 17, No. 10, 2660-2669 (2002)

    Article  ADS  Google Scholar 

  10. H. Hehtz, J. Reine: Angewandte Mathematik, 92, 156 (1882)

    Google Scholar 

  11. J. Boussinesq: Applications des potentiels à l'étude de l'équilibre et du mouvement des solides élastiques, Gauthier-Villars, Paris (1885)

    MATH  Google Scholar 

  12. B. Bushan, S. Sundararajan: Acta Mater. 46, 3793 (1998)

    Article  Google Scholar 

  13. A. Bolshakov, W.C. Oliver, G.M. Pharr: Pittsburgh, Materials Research Society, 141-146 (1997)

    Google Scholar 

  14. G. Hochstetter, A. Jimenez, J.L. Loubet: J. Macromol. Sci. Phys. B 38 (5 and 6),681-692 (2004)

    Google Scholar 

  15. J.L. Bucaille, S. Stauss, E. Felder, J. Michler: Acta Materialia 51, 1663-1678 (2003)

    Article  Google Scholar 

  16. F.P. Bowden, D. Tabor: The Friction and Lubrication of Solids, Clarendon Press, Oxford (1950-1954)

    Google Scholar 

  17. J.-M. Georges: Frottement, usure et lubrification, Sciences et techniques de l'ingénieur, CNRS Editions, Eyrolles (2000)

    Google Scholar 

  18. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang: Phys. Rev. Lett. 59, 1942-1945 (1987)

    Article  ADS  Google Scholar 

  19. O. Pietrement: Doctoral thesis, University of Reims (2000)

    Google Scholar 

Nanomechanical Properties: Computer Modelling

  1. L. Verlet: Computer “experiments” on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev. 159, 98-103 (1967)

    Article  ADS  Google Scholar 

  2. P. Vashishta, R.K. Kalia, A. Nakano: Multimillion atom molecular dynamics simulations of nanoparticles on parallel computers, J. Nanoparticle Research 5,119-135 (2003)

    Article  Google Scholar 

  3. M.J. Buehler, A. Hartmaier, H. Gao, M. Duchaineau, F.F. Abraham: Atomic plasticity: Description and analysis of a one-billion atom simulation of ductile materials failure, Comput. Methods Appl. Mech. Engrg. 193, 5257-5282 (2004)

    Article  MATH  Google Scholar 

  4. H. Auradou, M. Zei, E. Bouchaud: Numerical study of the temperature and porosity effects on the fracture propagation in a 2D network of elastic bonds, Eur. Phys. J. B 44, 365-372 (2005)

    Article  ADS  Google Scholar 

  5. C. Li, T.W. Chou: A structural mechanics approach for the analysis of carbon nanotubes, Int. J. Solids Struc. 40, 2487-2499 (2003)

    Article  MATH  Google Scholar 

  6. R.W. Clough: The finite element in-plane stress analysis, Proc. ASCE Conf. on Electronic Computation (1960)

    Google Scholar 

  7. P.V. Marçal, I.P. King: Elastic plastic analysis of two dimensional stress systems by the finite element method, Num. Meth. Ind. Form. Swansea 9 (1967)

    Google Scholar 

  8. H.D. Hibbitt, P.V. Marçal, J.R. Rice: A finite element formulation for problems of large strain and large displacement, Int. J. Solids Struc. 6, 1069-1086 (1970)

    Article  MATH  Google Scholar 

  9. R.M. McMeeking, J.R. Rice: Finite element formulation for problems of large elastic-plastic deformation, Int. J. Solids Struc. 11, 601-616 (1975)

    Article  MATH  Google Scholar 

  10. O.C. Zienkiewicz, D.R.J. Owen: Analysis of viscoplastic effects in pressure vessels by the finite element method, Nuclear Engn. Des. 28 (1974)

    Google Scholar 

  11. J.C. Nagtegaal: On the implementation of inelastic constitutive equations with special reference to large deformation problems, Comp. Methods Appl. Mech. Eng. 33, 469-484 (1982)

    Article  MATH  Google Scholar 

  12. T.J.L. Hughes, J. Winget: Finite rotation effects in numerical integration of rate constitutive equations arising in large deformation analysis, Int. J. Num. Meth. Eng. 15, 1862-1867 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  13. M.L. Wilkins: Calculation of elastoplastic flaws. In: Methods in Computational Physics, ed. by B. Alder, Academic Press (1964)

    Google Scholar 

  14. R.D. Krieg, B.D. Krieg: Accuracies of numerical solution method for the elastic-perfectly plastic model, ASME, J. Pressure Vessels and Piping Div. 99,510-515 (1977)

    Google Scholar 

  15. J.C. Simo, R.L. Taylor: Consistent tangent operator for rate-independent elastoplasticity, Comp. Methods Appl. Mech. Eng. 48, 101-118 (1985)

    Article  MATH  Google Scholar 

  16. Z.Q. Feng: Sur la modélisation d'un problème multiphysique: la projection à plasma, 7th Colloque National en Calcul des Structures, Giens, France (17-20 May 2005)

    Google Scholar 

  17. Z.Q. Feng: 2D or 3D frictional contact algorithms and applications in a large deformation context, Comm. Num. Meth. Eng. 11, 409-416 (1995)

    Article  MATH  Google Scholar 

  18. S. Iijima: Helical microtubules of graphitic carbon, Nature 354, 56-58 (1991)

    Article  ADS  Google Scholar 

  19. M.M.J. Treacy, T.W. Ebbesen, T.M. Gibson: Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature 381, 680-687 (1996)

    Article  ADS  Google Scholar 

  20. V.N. Popov, V.E. Van Doren, M. Balkanski: Elastic properties of single-walled carbon nanotubes, Phys. Rev. B 61, 3078-3084 (2000)

    Article  ADS  Google Scholar 

  21. B.I. Yakobson, M.P. Campbell, C.J. Brabec, J. Bernholc: High strain rate fracture and C-chain unraveling in carbon nanotubes, Computational Materials Science, 8, 341-348 (1997)

    Article  Google Scholar 

  22. E. Hernandez, C. Goze, P. Bernier, A. Rubio: Elastic properties of C and BxCyNz composite nanotubes, Phys. Rev. Lett. 80, 4502-4505 (1998)

    Article  ADS  Google Scholar 

  23. M. Arroyo, T. Belytschko: Finite element methods for the non-linear mechanics of crystalline sheets and nanotubes, Int. J. Numer. Meth. Engng. 59, 419-456 (2004)

    Article  MathSciNet  Google Scholar 

  24. T. Kuzumaki, T. Hayashi, H. Ichinose, K. Miyazawa, K. Ito, Y. Ishida: Insitu observed deformation of carbon nanotubes, Phil. Mag. A 77 (6), 1461-1469 (1998)

    Article  ADS  Google Scholar 

  25. F.F. Abraham, J.Q. Broughton, N. Bernstein, E. Kaxiras: Spanning the length scales in dynamic simulation, Comput. Phys. 12 (6), 538-546 (1998)

    Article  ADS  Google Scholar 

  26. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, R.K. Kalia: Hybrid finite-element/molecular-dynamics/electronic-density-functional approach to materials simulations on parallel computers, Comp. Phys. Comm. 138,143-154 (2001)

    Article  MATH  ADS  Google Scholar 

  27. S.P. Xiao, T. Belytschko: A bridging domain method for coupling continua with molecular dynamics, Comput. Methods Appl. Mech. Engrg. 193, 1645-1669 (2004)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Tromas, C. et al. (2008). Mechanical and Nanomechanical Properties. In: Bréchignac, C., Houdy, P., Lahmani, M. (eds) Nanomaterials and Nanochemistry. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72993-8_8

Download citation

Publish with us

Policies and ethics