Skip to main content

A Note on Universal Composable Zero Knowledge in Common Reference String Model

  • Conference paper
Theory and Applications of Models of Computation (TAMC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4484))

Abstract

Pass observed that universal composable zero-knowledge (UCZK) protocols in the common reference string (CRS) model, where a common reference string is selected trustily by a trusted third party and is known to all players, lose deniability that is a natural property of any ZK protocol in the plain model [33]. An open problem (or, natural query) raised in the literature is: are there any other essential security properties, other than the well-known deniability property, that could be lost by universal composable zero-knowledge in the common reference string model, in comparison with UC security in the plain model? In this work, we answer this open question (or, natural query), by showing that UCZK protocols in the CRS model could lose concurrent general composability (CGC) and proof of knowledge (POK) properties that are very important and essential security implications of UCZK in the plain model. This is demonstrated by concrete attacks.

The work described in this paper was supported in part by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project Number CityU 122105) and CityU Research Grant (9380039) and 973 project of China (No. 2007CB807901).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barak, B., Prabhakaran, M., Sahai, A.: Concurrent Non-Malleable Zero-Knowledge. Cryptology ePrint Archive, Report No. 2006/355. Extended abstract appears in FOCS 2006 (2006)

    Google Scholar 

  2. Blum, M.: Coin Flipping by Telephone. In: Proc. IEEE Spring COMPCOM, pp. 133–137 (1982)

    Google Scholar 

  3. Blum, M.: How to Prove a Theorem so No One Else can Claim It. In: Proceedings of the International Congress of Mathematicians, Berkeley, California, USA, pp. 1444–1451 (1986)

    Google Scholar 

  4. Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)

    Google Scholar 

  5. Bellare, M., Goldreich, O.: On Probabilistic versus Deterministic Provers in the Definition of Proofs Of Knowledge. Electronic Colloquium on Computational Complexity 13(136) (2006), Available also from Cryptology ePrint Archive, Report No. 2006/359.

    Google Scholar 

  6. Canetti, R.: Universally Composable Security: A New Paradigm for Cryptographic Protocols. In: IEEE Symposium on Foundations of Computer Science, pp. 136–145 (2001)

    Google Scholar 

  7. Canetti, R.: Security and Composition of Cryptographic Protocols: A Tutorial. Distributed Computing column of SIGACT News 37(3-4) (2006), Available also from Cryptology ePrint Archive, Report 2006/465.

    Google Scholar 

  8. Canetti, R., et al.: Universally Composable Security with Global Setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Canetti, R., Fischlin, M.: Universal Composable Commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  10. Canetti, R., Kushilevitz, E., Lindell, Y.: On the Limitations of Universal Composition Without Set-Up Assumptions. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 68–86. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Canetti, R., et al.: Universally Composable Two-Party and Multi-Party Secure Computation. In: ACM Symposium on Theory of Computing, pp. 494–503 (2002)

    Google Scholar 

  12. Canetti, R., Rabin, T.: Universal Composition with Joint State. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

    Google Scholar 

  13. Cramer, R.: Modular Design of Secure, yet Practical Cryptographic Protocols. PhD Thesis, University of Amsterdam (1996)

    Google Scholar 

  14. Cramer, R., Damgard, I., Schoenmakers, B.: Proofs of Partial Knowledge and Simplified Design of Witness Hiding Protocols. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 174–187. Springer, Heidelberg (1994)

    Google Scholar 

  15. Damgard, I.: Efficient Concurrent Zero-Knowledge in the Auxiliary String Model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  16. Damgard, I.: Lecture Notes on Cryptographic Protocol Theory. BRICS, Aarhus University (2003)

    Google Scholar 

  17. Dolev, D., Dwork, C., Naor, M.: Non-Malleable Cryptography. SIAM Journal on Computing 30(2), 391–437 (2000), Preliminary version in ACM Symposium on Theory of Computing, pp. 542–552 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  18. Garay, J.A., MacKenzie, P., Yang, K.: Strengthening Zero-Knowledge Protocols Using Signatures. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 177–194. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  19. Goldreich, O.: Foundation of Cryptography-Basic Tools. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  20. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing but Their Validity and a Methodology of Cryptographic Protocol Design. In: IEEE Symposium on Foundations of Computer Science, pp. 174–187 (1986)

    Google Scholar 

  21. Goldreich, O., Micali, S., Wigderson, A.: How to Prove All NP-Statements in Zero-Knowledge and a Methodology of Cryptographic Protocol Design. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)

    Google Scholar 

  22. Goldreich, O., Micali, S., Wigderson, A.: Proofs that Yield Nothing But Their Validity or All language in \(\mathcal{NP}\) Have Zero-Knowledge Proof Systems. Journal of the Association for Computing Machinery 38(1), 691–729 (1991), Preliminary version appears in IEEE Symposium on Foundations of Computer Science, pp. 174–187 (1986), and Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 171–185. Springer, Heidelberg (1987)

    MATH  MathSciNet  Google Scholar 

  23. Goldwasser, S., Micali, S., Rackoff, C.: The Knowledge Complexity of Interactive Proof-Systems. In: ACM Symposium on Theory of Computing, pp. 291–304 (1985)

    Google Scholar 

  24. Goldwasser, S., Micali, S., Rivest, R.L.: A Digital Signature Scheme Secure Against Adaptive Chosen Message Attacks. SIAM Journal on Computing 17(2), 281–308 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  25. Guillou, L., Quisquater, J.J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing both Transmission and Memory. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)

    Google Scholar 

  26. Hastad, J., et al.: Construction of a Pseudorandom Generator from Any One-Way Function. SIAM Journal on Computing 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  27. Katz, J.: Efficient and Non-Malleable Proofs of Plaintext Knowledge and Applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  28. Kilian, J.: Uses of Randomness in Algorithms and Protocols. MIT Press, Cambridge (1990)

    Google Scholar 

  29. Lindell, Y.: General Composition and Universal Composability in Secure Multi-Party Computation. In: IEEE Symposium on Foundations of Computer Science, pp. 394–403 (2003)

    Google Scholar 

  30. Lindell, Y.: Parallel Coin-Tossing and Constant-Round Secure Two-Party Computation. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 171–189. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  31. Lindell, Y.: Lower Bounds for Concurrent Self Composition. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 203–222. Springer, Heidelberg (2004)

    Google Scholar 

  32. Naor, M.: Bit Commitment Using Pseudorandomness. Journal of Cryptology 4(2), 151–158 (1991)

    Article  MATH  Google Scholar 

  33. Pass, R.: On Deniabililty in the Common Reference String and Random Oracle Models. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)

    Google Scholar 

  34. Schnorr, C.: Efficient Signature Generation by Smart Cards. Journal of Cryptology 4(3), 24 (1991)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jin-Yi Cai S. Barry Cooper Hong Zhu

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yao, A.C.C., Yao, F.F., Zhao, Y. (2007). A Note on Universal Composable Zero Knowledge in Common Reference String Model. In: Cai, JY., Cooper, S.B., Zhu, H. (eds) Theory and Applications of Models of Computation. TAMC 2007. Lecture Notes in Computer Science, vol 4484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72504-6_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72504-6_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72503-9

  • Online ISBN: 978-3-540-72504-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics