Skip to main content

The Role of Charge and Spin Migration in DNA Radiation Damage

  • Chapter
Charge Migration in DNA

Part of the book series: NanoScience and Technology ((NANO))

Abstract

High energy radiation damage to DNA results in direct ionization of DNA and its immediate surroundings. Holes are generated throughout the DNA and its first hydration layer in accord with the electron density and the electrons produced add randomly to the DNA bases. Within a short time frame the holes move to the most stable site, the guanine base, or react by deprotonation thus localizing the damage. Electrons rapidly transfer to the DNA bases of highest electron affinity, thymine and cytosine. From these initial events the major products of radiation damage to DNA result. In Chap. 7, Becker, Adhikary and Sevilla have reviewed the recent efforts that have elucidated hole and electron transfer processes within DNA and from its hydration layer. In addition recent results are presented and discussed in this chapter. demonstrating that visible light induces hole transfer to other bases, as well as, most significantly, to the sugar phosphate backbone resulting in sugar radicals and ultimately strand breaks, i.e. a significant DNA damage.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. D. Becker and M.D. Sevilla, Adv. Radiat. Biol. 17, 121 (1993).

    Google Scholar 

  2. (a) K. Senthilkumar, F.C. Grozema, C.F. Guerra, F.M. Bickelhaupt, F.D. Lewis, Y.A. Berlin, M.A. Ratner and L.D. Siebbeles, J. Am. Chem. Soc. 127, 14894 (2005). (b) F.D. Lewis, X. Liu, J. Liu, S.E. Miller, R.T. Hayes and M.R. Wasielewski, Nature (London), 406, 51 (2000).

    Article  Google Scholar 

  3. F.D. Lewis, R.L. Letsinger and M.R. Wasielewski, Acc. Chem. Res. 34, 159 (2001).

    Article  Google Scholar 

  4. B. Giese, Ann. Rev. Biochem. 71, 51 (2002).

    Article  Google Scholar 

  5. S. Delaney and J.K. Barton, J. Org. Chem. 68, 6475 (2003).

    Article  Google Scholar 

  6. G.B. Schuster, Acc. Chem. Res. 33, 253 (2000).

    Article  Google Scholar 

  7. D. Becker and M.D. Sevilla, in Royal Society of Chemistry Specialist Periodical Report edited by B.C. Gilbert, M.J. Davies, D.M. Murphy; Electron Spin Resonance. 16, 79 (1998).

    Google Scholar 

  8. M.D. Sevilla and D. Becker, in Royal Society of Chemistry Specialist Periodical Report edited by B.C. Gilbert, M.J. Davies, D.M. Murphy; Electron Spin Resonance. 19, 243 (2004).

    Google Scholar 

  9. Z. Cai and M.D. Sevilla, in Long Range Charge Transfer in DNA II edited by G.B. Schuster; Topics In Current Chemistry; Springer-Verlag, Berlin, Heidelberg; 237, 103 (2004).

    Google Scholar 

  10. W.A. Bernhard and D.M. Close, in Charged Particle and Photon Interactions with Matter Chemical, Physicochemical and Biological Consequences with Applications edited by A. Mozumdar, Y. Hatano (Marcel Dekkar, Inc., New York, Basel, 2004).

    Google Scholar 

  11. H.-A. Wagenknecht, in Charge Transfer in DNA: From Mechanism to Application edited by H.-A. Wagenknecht (Willey-VCH Verlag GmbH & Co. KGaA, Weiheim, 2005).

    Google Scholar 

  12. C. von Sonntag, in Free-radical-induced DNA Damage and Its Repair (Springer-Verlag, Berlin, Heidelberg, 2006).

    Google Scholar 

  13. A. Mozumder, in Advances in Radiation Chemistry edited by M. Burton, and J.L. Magee (Wiley-Interscience, New York, 1969).

    Google Scholar 

  14. A. Chatterjee and J.L. Magee, Radiat. Prot. Dosim. 13, 137 (1985).

    Google Scholar 

  15. A. Chatterjee and W.R. Holley, Int. J. Quantum. Chem. 13, 709 (1991).

    Article  Google Scholar 

  16. H. Nikjoo, D.T. Goodhead, D.E. Charlton and H.G. Paretzke, Int. J. Radiat. Biol. 60, 739 (1991).

    Article  Google Scholar 

  17. V. Michalik, Int. J. Radiat. Biol. 62, 9 (1992).

    Article  Google Scholar 

  18. M. Pinak and A. Ito, J. Radiat. Res. 34, 221 (1993).

    Article  Google Scholar 

  19. M. Kramer and G. Kraft, Adv. Space. Res. 14, 151 (1994).

    Article  ADS  Google Scholar 

  20. H. Nikjoo, S. Uehara, W.E. Wilson, M. Hoshi and D.T. Goodhead, Int. J. Radiat. Biol. 73, 355 (1998).

    Article  Google Scholar 

  21. F. Ballarini, M. Biaggi, L. De Biaggi, A. Ferrari, A. Ottolenghi, A. Panzarasa, H.G. Paretzke, M. Pelliccioni, P. Sala, D. Scannicchio and M. Zankl, Adv. Space. Res. 34, 1338 (2004).

    Article  ADS  Google Scholar 

  22. M.K. Bowman, D. Becker, M.D. Sevilla and J.D. Zimbrick, Radiat. Res. 163, 447 (2005).

    Article  Google Scholar 

  23. A. Hummel, in Radiation Chemistry: Principles and Applications edited by Farhataziz and A.J.M. Rodgers (Verlag Chemie, Weinheim, 1987).

    Google Scholar 

  24. J.F. Ward, in Physical and Chemical Mechanisms in Molecular Radiation Biology edited by W.A. Glass, and M.N. Verma, 403–415 (Plenum Press, New York, 1991).

    Google Scholar 

  25. A. Chatterjee, and W. R. Holley, Adv. Radiat. Biol. 17, 181 (1993).

    Google Scholar 

  26. D.T. Goodhead, Int. J. Radiat. Biol. 65, 7 (1994).

    Article  Google Scholar 

  27. J. Kiefer, in Biological radiation effects (Springer-Verlag, Berlin, Heidelberg, New York, 1990).

    Google Scholar 

  28. A. Mozumder, Fundamentals of Radiation Chemistry (Academic Press, San Diego, 1999).

    Google Scholar 

  29. C. von Sonntag, in The Chemical Basis of Radiation Biology (Taylor and Francis, London, 1987).

    Google Scholar 

  30. W.R. Holley, A. Chatterjee and J.L. Magee, Radiat. Res. 121, 161 (1990).

    Article  Google Scholar 

  31. B. Boudaffa, P. Cloutier, D. Hunting, M. Huels and L. Sanche, Science, 287, 1658 (2000).

    Article  ADS  Google Scholar 

  32. L. Sanche, Mass Spectrometry Reviews, 21, 349 (2002).

    Article  Google Scholar 

  33. X. Li, M.D. Sevilla and L. Sanche, J. Am. Chem. Soc. 125, 13668 (2003).

    Article  Google Scholar 

  34. J. Berdys, I. Anusiewicz, P. Skurski and J. Simons, J. Am. Chem. Soc. 126, 6441 (2004).

    Article  Google Scholar 

  35. Y. Zheng, P. Cloutier, D.J. Hunting, L. Sanche and J.R. Wagner, J. Am. Chem. Soc. 127, 16592 (2005).

    Article  Google Scholar 

  36. I. Bald, J. Kopyra and E. Illenberger, Angew. Chem. Int. Ed. 45, 4851 (2006).

    Article  Google Scholar 

  37. C. König, J. Kopyra, I. Bald and E. Illenberger, Phys. Rev. Lett. 97, 018105 (2006).

    Article  ADS  Google Scholar 

  38. S. Ptasiska, S. Denifl, S. Gohlke, P. Scheier, E. Illenberger and T.D. M, Angew. Chem. Int. Ed. 45, 1893 (2006).

    Article  Google Scholar 

  39. J. Gu, Y. Xie and H.F. Schaefer, J. Am. Chem. Soc. 128, 1250 (2006).

    Article  Google Scholar 

  40. P. Swiderek, Angew. Chem. Int. Ed. 45, 4056 (2006).

    Article  Google Scholar 

  41. W. Wang, M. Yan, D. Becker and M.D. Sevilla, Radiat. Res. 137, 2 (1994).

    Article  Google Scholar 

  42. D. Becker, A. Bryant-Friedrich, C. Trzasko and M.D. Sevilla, Radiat. Res. 160, 174 (2003).

    Article  Google Scholar 

  43. L.I. Shukla, R. Pazdro, J. Huang, C. DeVreugd, D. Becker, and M.D. Sevilla, Radiat. Res. 161, 582 (2004).

    Article  Google Scholar 

  44. A. Adhikary, A.Y.S. Malkhasian, S. Collins, J. Koppen, D. Becker, and M. D. Sevilla, Nucleic Acids Res. 33, 5553 (2005).

    Article  Google Scholar 

  45. A. Adhikary, D. Becker, S. Collins, J. Koppen, and M.D. Sevilla, Nucleic Acids Res. 34, 1501 (2006).

    Article  Google Scholar 

  46. A. Adhikary, A. Kumar and M.D. Sevilla, Radiat. Res. 165, 479 (2006).

    Article  Google Scholar 

  47. A. Kumar and M.D. Sevilla, J. Phys. Chem. B 110, 24181 (2006).

    Article  Google Scholar 

  48. A. Messer, K. Carpenter, K. Forzley, J. Buchanan, S. Yang, Y. Razskazovkii, Z. Cai and M.D. Sevilla, J. Phys. Chem. B 104, 1128 (2000).

    Article  Google Scholar 

  49. Z. Cai and M.D. Sevilla, J. Phys. Chem. B 104, 6942 (2000).

    Article  Google Scholar 

  50. Z. Cai, Z. Gu and M.D. Sevilla, J. Phys. Chem. B 104, 10406 (2000).

    Article  Google Scholar 

  51. Z. Cai, Z. Gu and M.D. Sevilla, J. Phys. Chem. B 105, 6031 (2001).

    Article  Google Scholar 

  52. Z. Cai, X. Li and M.D. Sevilla, J. Phys. Chem. B 106, 2755 (2002).

    Article  Google Scholar 

  53. C. Pal and J. Hüttermann, J. Phys. Chem. B 110, 14976 (2006).

    Article  Google Scholar 

  54. M.D. Sevilla, J. Phys. Chem. B 110, 25122 (2006).

    Article  Google Scholar 

  55. W. Wang, D. Becker and M.D. Sevilla, Radiat. Res. 135, 146 (1993).

    Article  Google Scholar 

  56. M.D. Sevilla and D. Becker, in Royal Society of Chemistry Specialist Periodical Report edited by B.C. Gilbert, M.J. Davies, D.M. Murphy; Electron Spin Resonance. 14, 130 (1994).

    Google Scholar 

  57. M. Yan, D. Becker, S.R. Summerfield, P. Renke and M.D. Sevilla, J. Phys. Chem. 96, 1983 (1992).

    Article  Google Scholar 

  58. D. Becker, T. La Vere and M.D. Sevilla, Radiat. Res. 140, 123 (1994).

    Article  Google Scholar 

  59. T. La Vere, D. Becker and M.D. Sevilla, Radiat. Res. 145, 673 (1996).

    Article  Google Scholar 

  60. J.F. Ward, Int. J. Radiat. Biol. 66, 427 (1994).

    Article  Google Scholar 

  61. J.R. Milligan, J.A. Aguilera, R.A. Paglinawan, K.J. Nguyen, and J.F. Ward, Int. J. Radiat. Biol. 78, 733 (2002).

    Article  Google Scholar 

  62. M.D. Sevilla, D. Becker, M. Yan and S.R. Summerfield, J. Phys. Chem. 95, 3409 (1991).

    Article  Google Scholar 

  63. D. Becker, Y. Razskazovskii, M.U. Callaghan, M.D. Sevilla, Radiat. Res. 146, 361 (1996).

    Article  Google Scholar 

  64. L.I. Shukla, R. Pazdro, D. Becker and M.D. Sevilla, Radiat. Res. 163, 591 (2005).

    Article  Google Scholar 

  65. S.D. Wetmore, R.J. Boyd, and L.A. Eriksson, Chem. Phys. Lett. 322, 129 (2000).

    Article  ADS  Google Scholar 

  66. X. Li, Z. Cai and M.D. Sevilla, J. Phys. Chem. B 105, 10115 (2001).

    Article  Google Scholar 

  67. X. Li, Z. Cai and M.D. Sevilla, J. Phys. Chem. A 106, 1596 (2002).

    Article  Google Scholar 

  68. X. Li, Z. Cai and M.D. Sevilla, J. Phys. Chem A 106, 9345 (2002).

    Article  Google Scholar 

  69. J. C. Rienstra-Kiracofe, G.S. Tschumper, H.F. Schaefer III, S. Nandi and G.B. Ellison, Chem. Rev. 102, 231 (2002).

    Article  Google Scholar 

  70. J. Reynisson and S. Steenken, Phys. Chem. Chem. Phys. 4, 527 (2002).

    Article  Google Scholar 

  71. D. Sovzil, P. Jungwirth, Z. Havlas, Collect. Czech. Chem. Commun. 69, 1395 (2004).

    Article  Google Scholar 

  72. A. Kumar, M. Knapp-Mohammady, P.C. Mishra and S. Suhai, J. Comput. Chem. 25, 1047 (2004).

    Article  Google Scholar 

  73. D.M. Close, J. Phys. Chem. A 108, 10376 (2004).

    Article  Google Scholar 

  74. C.E. Crespo-Hernez, R. Arce, Y. Ishikawa, L. Gorb, J. Leszczynski and D.M. Close, J. Phys. Chem. A 108, 6373 (2004).

    Article  Google Scholar 

  75. D.M. Close, C.E. Crespo-Hernez, L. Gorb and J. Leszczynski, J. Phys. Chem. A 109, 9279 (2005).

    Article  Google Scholar 

  76. T. Caruso, M. Carutenuto, E. Vasca and A. Peluso, J. Am. Chem. Soc. 127, 15040 (2005).

    Article  Google Scholar 

  77. H.-A. Wagenknecht, Angew. Chem. Int. Ed. 42, 2454 (2003).

    Article  Google Scholar 

  78. S.G. Swarts, M.D. Sevilla, D. Becker, C.J. Tokar and K.T. Wheeler, Radiat. Res., 129, 333 (1992).

    Article  Google Scholar 

  79. S.G. Swarts, D. Becker, M.D. Sevilla and K.T. Wheeler, Radiat. Res. 145, 304 (1996).

    Article  Google Scholar 

  80. M.G. Debije, M.T. Milano and W.A. Bernhard, Angew. Chem. Int. Ed. 38, 2752 (1999).

    Article  Google Scholar 

  81. M.G. Debije and W.A. Bernhard, Radiat. Res. 152, 583 (1999).

    Article  Google Scholar 

  82. M.T. Milano and W.A. Bernhard Radiat. Res. 151,39 (1999).

    Article  Google Scholar 

  83. F.D. Lewis, Photochemistry and Photobiology. 81, 65 (2005).

    Article  Google Scholar 

  84. V.B.E. Sartor and G.B. Schuster, J. Phys. Chem. A 105, 11057 (2001).

    Article  Google Scholar 

  85. C. Wan, T. Fiebig, O. Schiemann, J.K. Barton and A.H. Zewail, Proc. Natl. Acad. Sci. USA 97, 14052 (2000).

    Article  ADS  Google Scholar 

  86. M.G. Debije and W.A. Bernhard, J. Phys. Chem. B 104, 7845 (2000).

    Article  Google Scholar 

  87. G.D. Reid, D.J. Whittaker, J.A. Day, D.A. Turton, V. Kayser, J.M. Kelly and G.S. Beddard J. Am. Chem. Soc. 124, 5518 (2002).

    Article  Google Scholar 

  88. R.F. Anderson, and G.A. Wright Phys. Chem. Chem. Phys. 1, 4827 (1999).

    Article  Google Scholar 

  89. T.J. Meade and J.F. Kayyem, Angew. Chem. Int. Ed. 34, 352 (1995).

    Article  Google Scholar 

  90. P.F. Barbara and E.J.C. Olson, Adv. Chem. Phys. 107, 647 (1999).

    Article  Google Scholar 

  91. M. Bixon and J. Jortner, J. Phys. Chem. B 104, 3906 (2000).

    Article  Google Scholar 

  92. A. Nitzan, J. Jortner, J. Wilkie, A.L. Burin and M.A. Ratner J. Phys. Chem. B 104, 5661 (2000).

    Article  Google Scholar 

  93. A.A. Voityuk, N. R, M. Bixon and J. Jortner, J. Phys. Chem. B 104, 9740 (2000).

    Article  Google Scholar 

  94. Y.A. Berlin, A.L. Burin and M.A. Ratner, J. Am. Chem. Soc. 123, 260 (2001).

    Article  Google Scholar 

  95. Y.A. Berlin, A.L. Burin, L.D.A. Siebbeles and M.A. Ratner, J. Phys. Chem. A 105, 5666 (2001).

    Article  Google Scholar 

  96. M.H. Baik, J.S. Silverman, I.V. Yang, P.A. Ropp, V.A. Szalai, W. Yang and H.H. Thorp, J. Phys. Chem. A 105, 6437 (2001).

    Google Scholar 

  97. D.M.A. Smith and L. Adamowicz, J. Phys. Chem. B 105, 9345 (2001).

    Article  Google Scholar 

  98. A.A. Voityuk and N. R, J. Phys. Chem. B 106, 3013 (2002).

    Article  Google Scholar 

  99. G._S.M. Tong, I.V. Kurnikov and D.N. Beratan, J. Phys. Chem. B 106, 2381 (2002).

    Article  Google Scholar 

  100. A. Pezeshk, M.C.R. Symons, J.D. McClymont, J. Phys. Chem. 100, 18562 (1996).

    Article  Google Scholar 

  101. B. Weiland and J. Hüttermann, Int. J. Radiat. Biol. 76, 1075 (2000).

    Article  Google Scholar 

  102. P.M. Cullis, G.D.D. Jones, M.C.R. Symons and J.S. Lea, Nature. 330, 773 (1987).

    Article  ADS  Google Scholar 

  103. W.H. Nelson, E. Sagstuen, E.O. Hole and D.M. Close, Radiat. Res. 131, 10 (1992).

    Article  Google Scholar 

  104. W.H. Nelson, E. Sagstuen, E.O. Hole and D.M. Close, Radiat. Res. 149, 75 (1998).

    Article  Google Scholar 

  105. B. Giese and S. Wessely, Chem. Commun. 20, 2108 (2001).

    Article  Google Scholar 

  106. V. Shafirovich, A. Dourandin and N.E. Geacintov, J. Phys. Chem. B 105, 8431 (2001).

    Article  Google Scholar 

  107. Y. Razskazovskii, S.G. Swarts, J.M. Falcone, C. Taylor and M. D. Sevilla, J. Phys. Chem. B 101, 1460 (1997).

    Article  Google Scholar 

  108. L.I. Shukla, A. Adhikary, R. Pazdro, D. Becker and M.D. Sevilla, Nucleic Acids Res. 32, 6565 (2004).

    Article  Google Scholar 

  109. A. Adhikary, A. Kumar, D. Becker and M.D. Sevilla, J. Phys. Chem. B 110, 24171 (2006).

    Article  Google Scholar 

  110. A.-O. Colson and M.D. Sevilla, Int. J. Radiat. Biol. 67, 627 (1995).

    Article  Google Scholar 

  111. A.-O. Colson and M.D. Sevilla, J. Phys. Chem. 99, 3867 (1995).

    Article  Google Scholar 

  112. A. Joy, A.K. Ghosh and G.B. Schuster, J. Am. Chem. Soc. 128, 5346 (2006).

    Article  Google Scholar 

  113. Y. Razskazovskiy, M.G. Debije and W.A. Bernhard, Radiat. Res. 159, 663 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Becker, D., Adhikary, A., Sevilla, M.D. (2007). The Role of Charge and Spin Migration in DNA Radiation Damage. In: Chakraborty, T. (eds) Charge Migration in DNA. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72494-0_7

Download citation

Publish with us

Policies and ethics