Skip to main content

Heat Flow Analysis

  • Chapter
  • First Online:
Fundamentals of Basin and Petroleum Systems Modeling

Heat can be transferred by conduction, convection, and radiation in sediments (Beardsmore and Cull, 2001). The sediment–water–interface temperature and the basal heat flow are the main boundary conditions for heat flow analysis in sediments. Magnitude, orientation and distribution of the heat inflow at the base of the sediments are determined by mechanical and thermal processes of the crust and mantle (Allen and Allen, 2005).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • P. A. Allen and J. R. Allen. Basin Analysis. Blackwell Publishing, second edition, 2005.

    Google Scholar 

  • G. R. Beardsmore and J. P. Cull. Crustal Heat Flow. Cambridge University Press, 2001.

    Google Scholar 

  • C. Buecker and L. Rybach. A simple method to determine heat production from gamma logs. Marine and Petroleum Geology, (13): 373–377, 1996.

    Article  Google Scholar 

  • G. Buntebarth and J. R. Schopper. Experimental and theoretical investigation on the influence of fluids, solids and interactions between them on thermal properties of porous rocks. Physics and Chemistry of the Earth, 23 (6): 1141–1146, 1998.

    Article  Google Scholar 

  • P. T. Delaney. Fortran 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat cristallisation. Computers and Geosciences, 14: 181–212, 1988.

    Article  Google Scholar 

  • G. Delisle, S. Grassmann, B. Cramer, J. Messner, and J. Winsemann. Estimating episodic permafrost development in Northern Germany during the Pleistocene. Int. Assoc. Sed. Spec. Publ., 39: 109–120, 2007.

    Google Scholar 

  • D. Deming and D. S. Chapman. Thermal histories and hydrocarbon generation: example from Utah–Wyoming trust belt. AAPG Bulletin, 73: 1455–1471, 1989.

    Google Scholar 

  • W. R. Gambill. You can predict heat capacities. Chemical Engineering, pages 243–248, 1957.

    Google Scholar 

  • S. Grassmann, B. Cramer, G. Delisle, J. Messner, and J. Winsemann. Geological history and petroleum system of the Mittelplate oil field, Northern Germany. Int. J. Earth Sci. (Geol. Rundsch.), 94: 979–989, 2005.

    Article  Google Scholar 

  • S. J. Hellinger and J. G. Sclater. Some comments on two-layer extensional models for the evolution of sedimetary basins. Journal of Geophysical Research, 88: 8251–8270, 1983.

    Article  Google Scholar 

  • G. T. Jarvis and D. P. McKenzie. Sedimentary basin information with finite extension rates. Earth and Planet. Sci. Lett., 48: 42–52, 1980.

    Article  Google Scholar 

  • V. N. Kobranova. Petrophysics. Springer–Verlag, 1989.

    Google Scholar 

  • D. R. Lide. CRC Handbook of Cemistry and Physics. 87 edition, 2006.

    Google Scholar 

  • Ming Luo, J. R. Wood, and L. M. Cathles. Prediction of thermal conductivity in reservoir rocks using fabric theory. Journal of Applied Geophysics, 32: 321–334, 1994.

    Article  Google Scholar 

  • D. McKenzie. Some remarks on the development of sedimentary basins. Earth and Planet. Sci. Lett., 40: 25–32, 1978.

    Article  Google Scholar 

  • B. Parsons and J. G. Sclater. An analysis of the variation of ocean floor bathymetry and heat flow with age. Journal of Geophysical Research, 82 (5): 803–827, 1977.

    Article  Google Scholar 

  • B. E. Poling, J. M. Prausnitz, and J. P. O’Connell. The Properties of Liquids and Gases. McGraw–Hill, New York, 5th edition, 2001.

    Google Scholar 

  • L. Royden and C. E. Keen. Rifting processes and thermal evolution of the continental margin of eastern canada determined from subsidence curves. Earth and Planetary Science Letters, 51: 343–361, 1980.

    Article  Google Scholar 

  • L. Rybach. Wärmeproduktionsbestimmungen an Gesteinen der Schweizer Alpen (Determinations of heat production in rocks of the Swiss Alps), Beiträge zur Geologie der Schweiz. Geotechnische Serie, (51): 43, 1973. Kümmerly & Frei.

    Google Scholar 

  • J. G. Sclater, C. Jaupart, and D. Galson. The heat flow through oceanic and continental crust and the heat loss of the earth. Journal of Geophysical Research, 18: 269–311, 1980.

    Google Scholar 

  • K. Sekiguchi. A method for determining terrestrial heat flow in oil basinal areas. In Cerm? V., L. Rybach, and D. S. Chapman, editors, Terrestrial Heat Flow Studies and the Structure of the Lithosphere, volume 103 of Tectonophysics, pages 67–79. 1984.

    Google Scholar 

  • E. D. Jr. Sloan. Physical/chemical properties of gas hydrates and application to world margin stability and climate change. In J.-P. Henriet and J. Mienert, editors, Gas Hydrates: Relevance to World Margin Stability and Climate Change, volume 137 of Special Publication. Geological Society of London, 1998.

    Google Scholar 

  • W. H. Somerton. Thermal Properties and Temperature–Related Behavior of Rock/Fluid Systems: Elsevier. Elsevier, Amsterdam, 1992.

    Google Scholar 

  • D. L. Turcotte. On the thermal evolution of the earth. Earth and Planetary Science Letters, 48: 53–58, 1980.

    Article  Google Scholar 

  • D. W. Waples and H. Tirsgaard. Changes in matrix thermal conductivity of clays and claystones as a function of compaction. Petroleum Geoscience, 8: 365–370, 2002.

    Google Scholar 

  • D. W. Waples and J. S. Waples. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 1: Minerals and nonporous rocks, natural resources research. 13: 97–122, 2004a.

    Google Scholar 

  • D. W. Waples and J. S. Waples. A review and evaluation of specific heat capacities of rocks, minerals, and subsurface fluids. Part 2: Fluids and porous rocks, natural resources research. 13: 123–130, 2004b.

    Google Scholar 

  • B. P. Wygrala. Integrated study of an oil field in the southern Po Basin, Northern Italy. PhD thesis, University of Cologne, Germany, 1989.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hantschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hantschel, T., Kauerauf, A.I. (2009). Heat Flow Analysis. In: Fundamentals of Basin and Petroleum Systems Modeling. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72318-9_3

Download citation

Publish with us

Policies and ethics