Skip to main content

Loop Quantum Gravity: An Inside View

  • Chapter

Part of the book series: Lecture Notes in Physics ((LNP,volume 721))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Rovelli. Quantum Gravity, (Cambridge University Press, Cambridge, 2004).

    Book  MATH  Google Scholar 

  2. T. Thiemann. Modern Canonical Quantum General Relativity, (Cambridge University Press, Cambridge, 2006) (at press). [gr-qc/0110034]

    Google Scholar 

  3. C. Rovelli. Loop quantum gravity. Living Rev. Rel. 1 (1998), 1. [gr-qc/9710008] C. Rovelli. Strings, loops and others: a critical survey of the present approaches to quantum gravity. plenary lecture given at 15th Intl. Conf. on Gen. Rel. and Gravitation (GR15), Pune, India, Dec 16–21, 1997. [gr-qc/9803024] M. Gaul and C. Rovelli, Loop quantum gravity and the meaning of diffeomorphism invariance. Lect. Notes Phys. 541 (2000), 277–324. [gr-qc/9910079] T. Thiemann. Lectures on loop quantum gravity. Lect. Notes Phys. 631 (2003), 41–135. [gr-qc/0210094] A. Ashtekar and J. Lewandowski. Background-independent quantum gravity: a status report. Class. Quant. Grav. 21 (2004), R53. [gr-qc/0404018] L. Smolin. An invitation to loop quantum gravity. [hep-th/0408048]

    Google Scholar 

  4. R. M. Wald. Quantum field theory in curved space-time and black hole thermodynamics, (Chicago University Press, Chicago, 1995).

    Google Scholar 

  5. R. Brunetti, K. Fredenhagen and R. Verch. The generally covariant locality principle: a new paradigm for local quantum field theory. Commun. Math. Phys. 237 (2003), 31–68. [math-ph/0112041]

    MATH  ADS  MathSciNet  Google Scholar 

  6. R. Haag. Local Quantum Physics, 2nd ed., (Springer Verlag, Berlin, 1996).

    MATH  Google Scholar 

  7. N. Marcus and A. Sagnotti. The ultraviolet behavior of N=4 Yang-Mills nnd the power counting of extended superspace. Nucl. Phys. B256 (1985), 77. M. H. Goroff and A. Sagnotti. The ultraviolet behavior of Einstein gravity. Nucl. Phys. B266 (1986), 709. Non – renormalizability of (last hope) $D=11$ supergravity with a terse survey of divergences in quantum gravities. [hep-th/9905017]

    Google Scholar 

  8. M. H. Goroff and A. Sagnotti. Quantum gravity at two loops. Phys. Lett. B160 (1985), 81.

    ADS  Google Scholar 

  9. J. Polchinski. String Theory, Vol. 1: An introduction to the bosonic string, Vol. 2: Superstring theory and beyond, (Cambridge University Press, Cambridge, 1998).

    Google Scholar 

  10. E. D’Hoker and D.H. Phong. Lectures on Two Loop Superstrings. [hep-th/0211111]

    Google Scholar 

  11. G. Scharf. Finite Quantum Electrodynamics: The Causal Approach, (Springer Verlag, Berlin, 1995).

    MATH  Google Scholar 

  12. H. Nicolai, K. Peeters and M. Zamaklar. Loop quantum gravity: an outside view. Class. Quant. Grav. 22 (2005), R193. [hep-th/0501114]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. H. Nicolai and K. Peeters. Loop and spin foam quantum gravity: a brief guide for beginners. [gr-qc/0601129]

    Google Scholar 

  14. F. Denef and M. Douglas. Distributions of flux vacua. JHEP 0405 (2004), 072. [hep-th/0404116] J. Shelton, W. Taylor, B. Wecht. Generalized flux vacua. [hep-th/0607015]

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Susskind. The anthropic landscape of string theory. [hep-th/0302219]

    Google Scholar 

  16. L. Smolin. Scientific alternatives to the anthropic principle. [hep-th/0407213]

    Google Scholar 

  17. L. Smolin. The case for background independence. [hep-th/0507235]

    Google Scholar 

  18. J. Maldacena. The large N limit of superconformal field theories and supergravity. Adv. Theor. Math. Phys. 2 (1998), 231–252. [hep-th/9711200]

    MATH  MathSciNet  ADS  Google Scholar 

  19. T. Thiemann. The Phoenix project: master constraint programme for loop quantum gravity. Class. Quant. Grav. 23 (2006), 2211–2248. [gr-qc/0305080]

    Article  MATH  MathSciNet  Google Scholar 

  20. T. Thiemann. Quantum Spin Dynamics (QSD). Class. Quantum Grav. 15 (1998), 839–873. [gr-qc/9606089]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. D.M. Gitman and I. V. Tyutin. Quantization of Fields with Constraints, (Springer-Verlag, Berlin, 1990).

    MATH  Google Scholar 

  22. R. P. Woodard. Avoiding dark energy with 1/r modifications of gravity. [astro-ph/0601672]

    Google Scholar 

  23. R. Geroch. The domain of dependence. Journ. Math. Phys., 11 (1970), 437–509.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  24. R. Beig and O. Murchadha. The Poincaré group as the symmetry group of canonical general relativity. Ann. Phys. 174 (1987), 463.

    Article  MATH  ADS  Google Scholar 

  25. P. A. M. Dirac. Lectures on Quantum Mechanics, (Belfer Graduate School of Science, Yeshiva University Press, New York, 1964).

    Google Scholar 

  26. M. Henneaux and C. Teitelboim. Quantization of Gauge Systems, (Princeton University Press, Princeton, 1992).

    MATH  Google Scholar 

  27. S. A. Hojman, K. Kuchar and C. Teitelboim. Geometrodynamics regained. Annals Phys. 96 (1976), 88–135.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  28. T. Thiemann. The LQG string: loop quantum gravity quantization of string theory I: Flat target space. Class. Quant. Grav. 23 (2006), 1923–1970. [hep-th/0401172]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  29. N. M. J. Woodhouse. Geometric Quantization, 2nd. ed., (Clarendon Press, Oxford, 1991).

    Google Scholar 

  30. C. Rovelli. What is observable in classical and quantum gravity? Class. Quantum Grav. 8 (1991), 297–316. C. Rovelli. Quantum reference systems. Class. Quantum Grav. 8 (1991), 317–332. C. Rovelli. Time in quantum gravity: physics beyond the Schrodinger regime. Phys. Rev. D43 (1991), 442–456. C. Rovelli. Quantum mechanics without time: a model. Phys. Rev. D42 (1990), 2638–2646.

    Google Scholar 

  31. B. Dittrich. Partial and complete observables for Hamiltonian constrained systems. [gr-qc/0411013] B. Dittrich. Partial and complete observables for canonical general relativity. [gr-qc/0507106]

    Google Scholar 

  32. T. Thiemann. Reduced phase space quantization and Dirac observables. Class. Quant. Grav. 23 (2006), 1163–1180. [gr-qc/0411031]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  33. T. Thiemann. Solving the problem of time in general relativity and cosmology with phantoms and k-essence. [astro-ph/0607380]

    Google Scholar 

  34. B. Dittrich and T. Thiemann. Testing the master constraint programme for loop quantum gravity: I. General framework. Class. Quant. Grav. 23 (2006), 1025–1066. [gr-qc/0411138]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  35. B. Dittrich and T. Thiemann. Testing the master constraint programme for loop quantum gravity: II. Finite – dimensional systems. Class. Quant. Grav. 23 (2006), 1067–1088. [gr-qc/0411139] B. Dittrich and T. Thiemann. Testing the master constraint programme for loop quantum gravity: III. SL(2R) models. Class. Quant. Grav. 23 (2006), 1089–1120. [gr-qc/0411140] B. Dittrich and T. Thiemann. Testing the master constraint programme for loop quantum gravity: IV. Free field theories. Class. Quant. Grav. 23 (2006), 1121–1142. [gr-qc/0411141] B. Dittrich and T. Thiemann. Testing the master constraint programme for loop quantum gravity: V. Interacting field theories. Class. Quant. Grav. 23 (2006), 1143–1162. [gr-qc/0411142]

    Google Scholar 

  36. J. Klauder. Universal procedure for enforcing quantum constraints. Nucl. Phys. B547 (1999), 397–412. [hep-th/9901010] A. Kempf and J. R. Klauder, On the implementation of constraints through projection operators, J. Phys. A34 (2001), 1019–1036. [quant-ph/0009072]

    Google Scholar 

  37. D. Giulini and D. Marolf. On the generality of refined algebraic quantization. Class. Quant. Grav. 16 (1999), 2479–2488. [gr-qc/9812024]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  38. T. Thiemann. Quantum Spin Dynamics (QSD): II. The kernel of the Wheeler-DeWitt constraint operator. Class. Quantum Grav. 15 (1998), 875–905. [gr-qc/9606090] T. Thiemann. Quantum Spin Dynamics (QSD): III. Quantum constraint algebra and physical scalar product in quantum general relativity. Class. Quantum Grav. 15 (1998), 1207–1247. [gr-qc/9705017] T. Thiemann. Quantum Spin Dynamics (QSD): IV. 2+1 Euclidean quantum gravity as a model to test 3+1 Lorentzian quantum gravity. Class. Quantum Grav. 15 (1998), 1249–1280. [gr-qc/9705018] T. Thiemann. Quantum Spin Dynamics (QSD): V. Quantum gravity as the natural regulator of the Hamiltonian constraint of matter quantum field theories. Class. Quantum Grav. 15 (1998), 1281–1314. [gr-qc/9705019] T. Thiemann. Quantum Spin Dynamics (QSD): VI. Quantum Poincaré algebra and a quantum positivity of energy theorem for canonical quantum gravity. Class. Quantum Grav. 15 (1998), 1463–1485. [gr-qc/9705020]

    Google Scholar 

  39. B. S. DeWitt. Quantum theory of gravity. I. The canonical theory. Phys. Rev. 160 (1967), 1113–1148. B. S. DeWitt. Quantum theory of gravity. II. The manifestly covariant theory. Phys. Rev. 162 (1967), 1195–1238. B. S. DeWitt. Quantum theory of gravity. III. Applications of the covariant theory. Phys. Rev. 162 (1967), 1239–1256.

    Google Scholar 

  40. A. Ashtekar. New variables for classical and quantum gravity. Phys. Rev. Lett. 57 (1986), 2244–2247. A. Ashtekar. New Hamiltonian formulation of general relativity. Phys. Rev. D36 (1987), 1587–1602.

    Google Scholar 

  41. A. Ashtekar and C.J. Isham. Representations of the holonomy algebras of gravity and non-Abelean gauge theories. Class. Quantum Grav. 9 (1992), 1433. [hep-th/9202053]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  42. A. Ashtekar and J. Lewandowski. Representation theory of analytic holonomy C* algebras. In Knots and Quantum Gravity, J. Baez (ed.), (Oxford University Press, Oxford 1994). [gr-qc/9311010]

    Google Scholar 

  43. A. Ashtekar, J. Lewandowski, D. Marolf, J. Mourão and T. Thiemann. Quantization of diffeomorphism invariant theories of connections with local degrees of freedom. Journ. Math. Phys. 36 (1995), 6456–6493. [gr-qc/9504018]

    Article  MATH  ADS  Google Scholar 

  44. J.M. Mourão, T. Thiemann and J.M. Velhinho. Physical properties of quantum field theory measures. J. Math. Phys. 40 (1999), 2337–2353. [hep-th/9711139]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  45. F. Barbero. Real Ashtekar variables for Lorentzian signature space times. Phys. Rev. D51 (1995), 5507–5510. F. Barbero. Reality conditions and Ashtekar variables: a different perspective. Phys. Rev. D51 (1995), 5498–5506.

    Google Scholar 

  46. G. Immirzi. Quantum gravity and Regge calculus. Nucl. Phys. Proc. Suppl. 57 (1997), 65. [gr-qc/9701052] C. Rovelli and T. Thiemann. The Immirzi parameter in quantum general relativity. Phys. Rev. D57 (1998), 1009–1014. [gr-qc/9705059]

    Google Scholar 

  47. B. Brügmann and J. Pullin. Intersecting N loop solutions of the Hamiltonian constraint of quantum gravity. Nucl. Phys. B363 (1991), 221–246. B. Brügmann, J. Pullin and R. Gambini. Knot invariants as nondegenerate quantum geometries. Phys. Rev. Lett. 68 (1992), 431–434. B. Brügmann, J. Pullin and R. Gambini. Jones polynomials for intersecting knots as physical states of quantum gravity. Nucl. Phys. B385 (1992), 587–603.

    Google Scholar 

  48. T. Thiemann. Anomaly-free formulation of non-perturbative, four-dimensional Lorentzian quantum gravity. Physics Letters B380 (1996), 257–264. [gr-qc/9606088]

    ADS  MathSciNet  Google Scholar 

  49. J. Samuel. Canonical gravity, diffeomorphisms and objective histories. Class. Quant. Grav. 17 (2000), 4645–4654. [gr-qc/0005094] J. Samuel. Is Barbero’s Hamiltonian formulation a gauge theory of Lorentzian gravity? Class. Quantum Grav. 17 (2000), L141. [gr-qc/00050095]

    Google Scholar 

  50. S. Alexandrov. SO(4,C) covariant Ashtekar-Barbero gravity and the Immirzi parameter. Class. Quant. Grav. 17 (2000), 4255–4268. [gr-qc/0005085]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  51. R. Gambini and A. Trias. Second quantization of the free electromagnetic field as quantum mechanics in the loop space. Phys. Rev. D22 (1980), 1380. C. Di Bartolo, F. Nori, R. Gambini and A. Trias. Loop space quantum formulation of free electromagnetism. Lett. Nuov. Cim. 38 (1983), 497. R. Gambini and A. Trias. Gauge dynamics in the C representation. Nucl. Phys. B278 (1986), 436.

    Google Scholar 

  52. R. Giles. The reconstruction of gauge potentials from Wilson loops. Phys. Rev. D8 (1981), 2160.

    ADS  MathSciNet  Google Scholar 

  53. Jacobson and L. Smolin. Nonperturbative quantum geometries. Nucl. Phys. B299 (1988), 295.

    Article  ADS  MathSciNet  Google Scholar 

  54. C. Rovelli and L. Smolin. Loop space representation of quantum general relativity. Nucl. Phys. B331 (1990), 80.

    Article  ADS  MathSciNet  Google Scholar 

  55. A. Ashtekar, A. Corichi and J.A. Zapata. Quantum theory of geometry III: Non-commutativity of Riemannian structures. Class. Quant. Grav. 15 (1998), 2955–2972 [gr-qc/9806041]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  56. H. Araki. Hamiltonian formalism and the canonical commutation relations in quantum field theory. J. Math. Phys. 1 (1960), 492.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  57. J. Lewandowski, A. Okolow, H. Sahlmann and T. Thiemann. Uniqueness of diffeomorphism invariant states on holonomy – flux algebras. Comm. Math. Phys. 267 (2006), 703–733. [gr-qc/0504147]

    Google Scholar 

  58. C. Fleischhack. Representations of the Weyl algebra in quantum geometry. [math-ph/0407006]

    Google Scholar 

  59. O. Bratteli and D. W. Robinson. Operator algebras and quantum statistical mechanics, Vol. 1,2, (Springer Verlag, Berlin, 1997).

    Google Scholar 

  60. W. Rudin. Real and complex analysis, (McGraw-Hill, New York, 1987).

    MATH  Google Scholar 

  61. J. Velhinho. A groupoid approach to spaces of generalized connections. J. Geom. Phys. 41 (2002) 166–180. [hep-th/0011200]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  62. A. Ashtekar and J. Lewandowski. Projective techniques and functional integration for gauge theories. J. Math. Phys. 36 (1995), 2170–2191. [gr-qc/9411046] A. Ashtekar and J. Lewandowski. Differential geometry on the space of connections via graphs and projective limits. Journ. Geo. Physics 17 (1995), 191–230. [hep-th/9412073]

    Google Scholar 

  63. J. R. Munkres. Toplogy: A First Course, (Prentice Hall Inc., Englewood Cliffs (NJ), 1980).

    Google Scholar 

  64. Y. Yamasaki. Measures on Infinite Dimensional Spaces, (World Scientific, Singapore, 1985).

    Google Scholar 

  65. H. Sahlmann and T. Thiemann. Irreducibility of the Ashtekar – Isham – Lewandowski representation. Class. Quant. Grav. 23 (2006), 4453–4472. [gr-qc/0303074]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  66. spin network basis C. Rovelli and L. Smolin. Spin networks and quantum gravity. Phys. Rev. D53 (1995), 5743–5759. [gr-qc/9505006] J. Baez. Spin networks in non-perturbative quantum gravity. In The Interface of Knots and Physics, L. Kauffman (ed.), (American Mathematical Society, Providence, Rhode Island, 1996). [gr-qc/9504036]

    Google Scholar 

  67. M. Reed, B. Simon. Methods of Modern Mathematical Physics, Vols. 1–4, (Academic Press, Boston, 1980).

    Google Scholar 

  68. N. Grot and C. Rovelli. Moduli space structure of knots with intersections. J. Math. Phys. 37 (1996), 3014–3021. [gr-qc/9604010]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  69. J.-A. Zapata. A combinatorial approach to diffeomorphism invariant quantum gauge theories. Journ. Math. Phys. 38 (1997), 5663–5681. [gr-qc/9703037] J.-A. Zapata. A combinatorial space from loop quantum gravity. Gen. Rel. Grav. 30 (1998), 1229–1245. [gr-qc/9703038]

    Google Scholar 

  70. W. Fairbairn and C. Rovelli. Separable Hilbert space in loop quantum gravity. J. Math. Phys. 45 (2004), 2802–2814. [gr-qc/0403047]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  71. J. Velhinho. Comments on the kinematical structure of loop quantum cosmology. Class. Quant. Grav. 21 (2004), L109. [gr-qc/0406008]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  72. D. Marolf and J. Lewandowski. Loop constraints: A habitat and their algebra. Int. J. Mod. Phys. D7 (1998), 299–330. [gr-qc/9710016]

    ADS  MathSciNet  Google Scholar 

  73. R. Gambini, J. Lewandowski, D. Marolf and J. Pullin. On the consistency of the constraint algebra in spin network gravity. Int. J. Mod. Phys. D7 (1998), 97–109. [gr-qc/9710018]

    ADS  MathSciNet  Google Scholar 

  74. T. Thiemann. Quantum spin dynamics (QSD): VIII. The master constraint. Class. Quant. Grav. 23 (2006), 2249–2266. [gr-qc/0510011] M. Han and Y. Ma. Master constraint operator in loop quantum gravity. Phys. Lett. B635 (2006), 225–231. [gr-qc/0510014]

    Google Scholar 

  75. T. Thiemann. Kinematical Hilbert spaces for fermionic and Higgs quantum field theories. Class. Quantum Grav. 15 (1998), 1487–1512. [gr-qc/9705021]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  76. M. Bojowald and H. A. Morales-Tecotl. Cosmological applications of loop quantum gravity. Lect. Notes Phys. 646 (2004), 421–462. [gr-qc/0306008]

    ADS  Google Scholar 

  77. K. Giesel and T. Thiemann. Algebraic quantum gravity (AQG) I. Conceptual setup. [gr-qc/0607099] K. Giesel and T. Thiemann. Algebraic quantum gravity (AQG) II. Semiclassical analysis. [gr-qc/0607100] K. Giesel and T. Thiemann. Algebraic quantum gravity (AQG) III. Semiclassical perturbation theory. [gr-qc/0607101]

    Google Scholar 

  78. Rovelli and L. Smolin. Discreteness of volume and area in quantum gravity. Nucl. Phys. B442 (1995), 593–622. Erratum: Nucl. Phys. B456 (1995), 753. [gr-qc/9411005]

    Google Scholar 

  79. A. Ashtekar and J. Lewandowski. Quantum theory of geometry II: volume operators. Adv. Theo. Math. Phys. 1 (1997), 388–429. [gr-qc/9711031]

    MATH  MathSciNet  Google Scholar 

  80. K. Giesel and T. Thiemann. Consistency check on volume and triad operator quantisation in loop quantum gravity. I. Class. Quant. Grav. 23 (2006), 5667–5691. [gr-qc/0507036] K. Giesel and T. Thiemann. Consistency check on volume and triad operator quantisation in loop quantum gravity. II. Class. Quant. Grav. 23, (2006) 5693–5771. [gr-qc/0507037]

    Google Scholar 

  81. P. Hajíček and K. Kuchař. Constraint quantization of parametrized relativistic gauge systems in curved space-times. Phys. Rev. D41 (1990), 1091–1104. P. Hajíček and K. Kuchař. Transversal affine connection and quantization of constrained systems. Journ. Math. Phys. 31 (1990), 1723–1732.

    Google Scholar 

  82. L. Smolin. The classical limit and the form of the Hamiltonian constraint in non-perturbative quantum general relativity. [gr-qc/9609034]

    Google Scholar 

  83. E. Witten. (2+1)-dimensional gravity as an exactly solvable system. Nucl. Phys. B311 (1988), 46.

    Article  ADS  MathSciNet  Google Scholar 

  84. M. Gaul and C. Rovelli. A generalized Hamiltonian contraint operator in loop quantum gravity and its simplest Euclidean matrix elements. Class. Quant. Grav. 18 (2001) 1593–1624. [gr-qc/0011106]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  85. A. Perez. On the regularization ambiguities in loop quantum gravity. Phys. Rev. D73 (2006), 044007. [gr-qc/0509118]

    ADS  Google Scholar 

  86. T. Thiemann. Quantum Spin Dynamics (QSD): VII. Symplectic structures and continuum lattice formulations of gauge field theories. Class. Quant. Grav. 18 (2001) 3293–3338. [hep-th/0005232] T. Thiemann. Complexifier coherent states for canonical quantum general relativity. Class. Quant. Grav. 23 (2006), 2063–2118. [gr-qc/0206037] T. Thiemann. Gauge Field Theory Coherent States (GCS): I. General properties. Class. Quant. Grav. 18 (2001), 2025–2064. [hep-th/0005233] T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): II. Peakedness properties. Class. Quant. Grav. 18 (2001) 2561–2636. [hep-th/0005237] T. Thiemann and O. Winkler. Gauge Field Theory Coherent States (GCS): III. Ehrenfest theorems. Class. Quantum Grav. 18 (2001), 4629–4681. [hep-th/0005234] T. Thiemann and O. Winkler. Gauge field theory coherent states (GCS): IV. Infinite tensor product and thermodynamic limit. Class. Quantum Grav. 18 (2001), 4997–5033. [hep-th/0005235] H. Sahlmann, T. Thiemann and O. Winkler. Coherent states for canonical quantum general relativity and the infinite tensor product extension. Nucl. Phys. B606 (2001) 401–440. [gr-qc/0102038]

    Google Scholar 

  87. P. Hasenfratz. The Theoretical Background and Properties of Perfect Actions. [hep-lat/9803027] S. Hauswith. Perfect Discretizations of Differential Operators. [hep-lat/0003007]; The Perfect Laplace Operator for Non-Trivial Boundaries. [hep-lat/0010033]

    Google Scholar 

  88. J. Brunnemann and T. Thiemann. Simplification of the spectral analysis of the volume operator in loop quantum gravity. Class. Quant. Grav. 23 (2006), 1289–1346. [gr-qc/0405060]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  89. T. Thiemann. Closed formula for the matrix elements of the volume operator in canonical quantum gravity. Journ. Math. Phys. 39 (1998), 3347–3371. [gr-qc/9606091]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  90. D. Stauffer and A. Aharony. Introduction to Percolation Theory, 2nd ed., (Taylor and Francis, London, 1994). D. M. Cvetovic, M. Doob and H. Sachs. Spectra of Graphs, (Academic Press, New York, 1979).

    Google Scholar 

  91. A. Perez. Spin foam models for quantum gravity. Class. Quant. Grav. 20 (2003), R43. [gr-qc/0301113]

    Article  MATH  ADS  Google Scholar 

  92. M. Reisenberger and C. Rovelli. Sum over surfaces form of loop quantum gravity. Phys. Rev. D56 (1997), 3490–3508. [gr-qc/9612035]

    ADS  MathSciNet  Google Scholar 

  93. E. Buffenoir, M. Henneaux, K. Noui and Ph. Roche. Hamiltonian analysis of Plebanski theory. Class. Quant. Grav. 21 (2004), 5203–5220. [gr-qc/0404041]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  94. J. W. Barrett and L. Crane. Relativistic spin networks and quantum gravity. J. Math. Phys. 39 (1998), 3296–3302. [gr-qc/9709028] J. W. Barrett and L. Crane. A Lorentzian signature model for quantum general relativity. Class. Quant. Grav. 17 (2000) 3101–3118. [gr-qc/9904025]

    Google Scholar 

  95. J. C. Baez, J. D. Christensen, T. R. Halford and D. C. Tsang. Spin foam models of Riemannian quantum gravity. Class. Quant. Grav. 19 (2002), 4627–4648. [gr-qc/0202017] J. C. Baez and J. D. Christensen. Positivity of spin foam amplitudes. Class. Quant. Grav. 19 (2002), 2291–2306. [gr-qc/0110044]

    Google Scholar 

  96. L. Freidel. Group field theory: an overview. Int. J. Theor. Phys. 44 (2005), 1769–1783. [hep-th/0505016]

    Article  MATH  MathSciNet  Google Scholar 

  97. J. Ambjorn, M. Carfora and A. Marzuoli. The geometry of dynamical triangulations, (Springer-Verlag, Berlin, 1998).

    Google Scholar 

  98. A. Ashtekar and J. Lewandowski. Quantum theory of geometry I: Area Operators. Class. Quantum Grav. 14 (1997), A55–A82. [gr-qc/9602046]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  99. T. Thiemann. A length operator for canonical quantum gravity. Journ. Math. Phys. 39 (1998), 3372–3392. [gr-qc/9606092]

    Google Scholar 

  100. B. Dittrich and T. Thiemann. Facts and fiction about Dirac observables. (to appear)

    Google Scholar 

  101. M. Varadarajan. Fock representations from U(1) holonomy algebras. Phys. Rev. D61 (2000), 104001. [gr-qc/0001050] M. Varadarajan. Photons from quantized electric flux representations. Phys. Rev. D64 (2001), 104003. [gr-qc/0104051] M. Varadarajan. Gravitons from a loop representation of linearized gravity. Phys. Rev. D66 (2002), 024017. [gr-qc/0204067] M. Varadarajan. The Graviton vacuum as a distributional state in kinematic loop quantum gravity. Class. Quant. Grav. 22 (2005), 1207–1238. [gr-qc/0410120]

    Google Scholar 

  102. A. Ashtekar and J. Lewandowski. Relation between polymer and Fock excitations. Class. Quant. Grav. 18 (2001), L117–L128. [gr-qc/0107043]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  103. A. Ashtekar. Classical and quantum physics of isolated horizons: a brief overview. Lect. Notes Phys. 541 (2000) 50–70.

    Article  ADS  MathSciNet  Google Scholar 

  104. S. Hayward. Marginal surfaces and apparent horizons. [gr-qc/9303006] S. Hayward. On the definition of averagely trapped surfaces. Class. Quant. Grav. 10 (1993), L137–L140. [gr-qc/9304042] S. Hayward. General laws of black hole dynamics. Phys. Rev. D49 (1994), 6467–6474. S. Hayward, S. Mukohyama and M.C. Ashworth. Dynamic black hole entropy. Phys. Lett. A256 (1999), 347–350. [gr-qc/9810006] A. Ashtekar and B. Krishnan. Dynamical horizons and their properties. Phys. Rev. D68 (2003), 104030. [gr-qc/0308033]

    Google Scholar 

  105. V. Husain and O. Winkler. Quantum black holes. Class. Quant. Grav. 22 (2005), L135–L142. [gr-qc/0412039]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  106. A. Ashtekar, J. C. Baez and K. Krasnov. Quantum geometry of isolated horizons and black hole entropy. Adv. Theor. Math. Phys. 4 (2001), 1–94. [gr-qc/0005126]

    MathSciNet  Google Scholar 

  107. M. Domagala and J. Lewandowski. Black hole entropy from quantum geometry. Class. Quant. Grav. 21 (2004), 5233–5244. [gr-qc/0407051]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  108. K. Meissner. Black hole entropy in loop quantum gravity. Class. Quant. Grav. 21 (2004), 5245–5252. [gr-qc/0407052]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  109. A. Ashtekar, M. Bojowald and J. Lewandowski. Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7 (2003), 233. [gr-qc/0304074]

    MathSciNet  Google Scholar 

  110. A. Ashtekar, T. Pawlowski and P. Singh. Quantum nature of the big bang. Phys. Rev. Lett. 96 (2006), 141301. [gr-qc/0602086]

    Article  ADS  MathSciNet  Google Scholar 

  111. A. Ashtekar, T. Pawlowski and P. Singh. Quantum nature of the big bang. Phys. Rev. Lett. 96 (2006), 141301. [gr-qc/0602086] A. Ashtekar, T. Pawlowski and P. Singh. Quantum nature of the big bang: an analytical and numerical investigation. I. Phys. Rev. D73 (2006), 124038. [gr-qc/0604013] A. Ashtekar, T. Pawlowski and P. Singh. Quantum nature of the big bang: improved dynamics. [gr-qc/0607039]

    Google Scholar 

  112. J. Brunnemann and T. Thiemann. On (cosmological) singularity avoidance in loop quantum gravity. Class. Quant. Grav. 23 (2006), 1395–1428. [gr-qc/0505032] J. Brunnemann and T. Thiemann. Unboundedness of triad – like operators in loop quantum gravity. Class. Quant. Grav. 23 (2006), 1429–1484. [gr-qc/0505033]

    Google Scholar 

  113. T. Jacobson, S. Liberati and D. Mattingly. Lorentz violation at high energy: concepts, phenomena and astrophysical constraints. Annals Phys. 321 (2006), 150–196. [astro-ph/0505267]

    Article  MATH  ADS  Google Scholar 

  114. S. Hossenfelder. Interpretation of quantum field theories with a minimal length scale. Phys. Rev. D73 (2006), 105013. [hep-th/0603032]

    ADS  Google Scholar 

  115. J. Kowalski-Glikman. Introduction to doubly special relativity. Lect. Notes Phys. 669 (2005), 131–159. [hep-th/0405273]

    Article  ADS  Google Scholar 

  116. L. Freidel, J. Kowalski-Glikman and L. Smolin. 2+1 gravity and doubly special relativity. Phys. Rev. D69 (2004), 044001. [hep-th/0307085]

    ADS  MathSciNet  Google Scholar 

  117. L. Freidel and S. Majid. Noncommutative harmonic analysis, sampling theory and the Duflo map in 2+1 quantum gravity. [hep-th/0601004]

    Google Scholar 

  118. G. Amelino-Camelia, John R. Ellis, N.E. Mavromatos, D.V. Nanopoulos and Subir Sarkar. Potential sensitivity of gamma ray burster observations to wave dispersion in vacuo. Nature. 393 (1998) 763–765. [astro-ph/9712103]

    Article  ADS  Google Scholar 

  119. S. D. Biller et al. Limits to quantum gravity effects from observations of TeV flares in active galaxies. Phys. Rev. Lett. 83 (1999), 2108–2111. [gr-qc/9810044]

    Article  ADS  Google Scholar 

  120. R. Gambini and J. Pullin, Nonstandard optics from quantum spacetime. Phys. Rev. D59 (1999), 124021. [gr-qc/9809038]

    ADS  MathSciNet  Google Scholar 

  121. H. Sahlmann and T. Thiemann. Towards the QFT on curved spacetime limit of QGR. 1. A general scheme. Class. Quant. Grav. 23 (2006), 867–908. [gr-qc/0207030] H. Sahlmann and T. Thiemann. Towards the QFT on curved spacetime limit of QGR. 2. A concrete implementation. Class. Quant. Grav. 23 (2006), 909–954. [gr-qc/0207031]

    Google Scholar 

  122. S. Hofmann and O. Winkler. The spectrum of fluctuations in inflationary cosmology. [astro-ph/0411124]

    Google Scholar 

  123. S. Tsujikawa, P. Singh and R. Maartens. Loop quantum gravity effects on inflation and the CMB. Class. Quant. Grav. 21 (2004), 5767–5775. [astro-ph/0311015]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  124. Robert C. Helling, G. Policastro. String quantization: Fock vs. LQG representations. [hep-th/0409182]

    Google Scholar 

  125. H. Narnhofer and W. Thirring. Covariant QED without indefinite metric. Rev. Math. Phys. SI1 (1992), 197–211.

    MathSciNet  Google Scholar 

  126. J. Slawny. On factor representations and the C^*-algebra of canonical commutation relations. Comm. Math. Phys. 24 (1972), 151–170.

    Article  MATH  ADS  MathSciNet  Google Scholar 

  127. A. Ashtekar, S. Fairhurst and J. L. Willis. Quantum gravity, shadow states and quantum mechanics. Class. Quant. Grav. 20 (2003), 1031. [gr-qc/0207106]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  128. K. Fredenhagen, F. Reszewski. Polymer state approximations of Schrodinger wave functions. [gr-qc/0606090]

    Google Scholar 

  129. T. Thiemann. The LQG string: loop quantum gravity quantization of string theory I: Flat target space. Class. Quant. Grav. 23 (2006), 1923–1970. [hep-th/0401172]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  130. G. Mack, “Introduction to Conformal Invariant Quantum Field Theory in two and more Dimensions”, in: Cargese 1987, “Nonperturbative Quantum Field Theory”, 1987; Preprint DESY 88–120

    Google Scholar 

  131. K. Pohlmeyer. A group theoretical approach to the quantization of the free relativistic closed string. Phys. Lett. B119 (1982), 100. D. Bahns. The invariant charges of the Nambu – Goto string and canonical quantisation. J. Math. Phys. 45 (2004), 4640–4660. [hep-th/0403108]

    Google Scholar 

  132. A. Hauser and A. Corichi. Bibliography of publications related to classical self-dual variables and loop quantum gravity, [gr-qc/0509039]

    Google Scholar 

  133. H. Kodama. Holomorphic wave function of the universe. Phys. Rev. D42 (1990), 2548–2565.

    ADS  MathSciNet  Google Scholar 

  134. L. Freidel and L. Smolin. Linearization of the Kodama state. Class. Quant. Grav. 21 (2004), 3831–3844. [hep-th/0310224]

    Article  MATH  ADS  MathSciNet  Google Scholar 

  135. R. Gambini and J. Pullin. Loops, Knots, Gauge Theories and Quantum Gravity, (Cambridge University Press, Cambridge, 1996).

    Book  MATH  Google Scholar 

  136. E. Witten. Quantum field theory and the Jones polynomial. Comm. Math. Phys. 121 (1989), 351–399.

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thiemann, T. (2007). Loop Quantum Gravity: An Inside View. In: Stamatescu, IO., Seiler, E. (eds) Approaches to Fundamental Physics. Lecture Notes in Physics, vol 721. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71117-9_10

Download citation

Publish with us

Policies and ethics