Skip to main content

Instant Pattern Filtering and Discrimination in a Multilayer Network with Gaussian Distribution of the Connections

  • Conference paper
Pixelization Paradigm (VIEW 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4370))

Included in the following conference series:

  • 386 Accesses

Abstract

This paper was designed to build an artificial multilayer network with the purpose of studying abilities like instant pattern recognition and discrimination where no learning would be required. The relevance refers to: (1) theories about putative biological mechanisms that would support innate perception, (2) technological implementation of faster systems for detection and classification of environmental stimulus without learning. Our model was built using few paradigmatic principles of neural organization. The connections obey a Gaussian function. When the network is submitted to diverse input patterns it produces both discriminative and distributed codes in all layers. Contrasting stimulus leads to an attention-like process by salience detection. Finally, the codes always hold a half of all nodes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Robert, L., Goldstone, R.L.: Perceptual learning. Annu. Rev. Psychol. 49, 585–612 (1998)

    Article  Google Scholar 

  2. Dosher, B.A., Lu, Z.L.: Perceptual learning in clear displays optimizes perceptual expertise: learning the limiting process. Proc. Natl. Acad. Sci. U S A. 102, 5286–5290 (2005)

    Article  Google Scholar 

  3. Dosher, B.A., Lu, Z.L.: Perceptual learning reflects external noise filtering and internal noise reduction through channel reweighting. Proc. Natl. Acad. Sci. USA 95, 13988–13993 (1998)

    Article  Google Scholar 

  4. Schiltz, C., Bodart, J.M., Dubois, S., Dejardin, S., Michel, C., Roucoux, A., Crommelinck, M., Orban, G.A.: Neuronal Mechanisms of Perceptual Learning: Changes in Human Brain Activity with Training in Orientation Discrimination. NeuroImage 9, 46–62 (1999)

    Article  Google Scholar 

  5. Nirenberg, S., Latham, P.E.: Decoding neuronal spike trains: How important are correlations? Acad. Sci. USA 100, 7348–7353 (2003)

    Article  Google Scholar 

  6. Thorpe, S.: Localized versus distributed representations. In: Arbib, M. (ed.) Handbook of brain theory and Neural Networks, pp. 549–552. MIT press, Cambridge (1995)

    Google Scholar 

  7. Földiák, P., Young, M.P.: Sparse Coding in the Primate Cortex. In: Arbib, M. (ed.) Handbook of brain theory and Neural Networks, pp. 895–898. MIT press, Cambridge (1995)

    Google Scholar 

  8. Tootell, R.B.H., Dale, A.M., Sereno, M.I., Malach, R.: New images from human visual cortex. Trends Neurosci. 19, 481–488 (1996)

    Article  Google Scholar 

  9. Engel, A.K., Roelfsema, P.R., Fries, P., Brecht, M., Singer, W.: Role of the temporal domain for response selection and perceptual binding. Cerebr. Cortex 7, 571–582 (1997)

    Article  Google Scholar 

  10. Katz, D.B., Nicolelis, M.A.L., Simon, S.A.: Gustatory processing is dynamic and distributed Curr. Opinion Neurobiol. 12, 448–454 (2002)

    Article  Google Scholar 

  11. Katz, D.B., Simon, S.A., Nicolelis, M.A.L.: Dynamic and Multimodal Responses of Gustatory Cortical Neurons. J. Neurosci. 21, 4478–4489 (2001)

    Google Scholar 

  12. Korsching, S.: Olfactory maps and odor images. Curr. Opinion Neurobiol. 12, 387–392 (2002)

    Article  Google Scholar 

  13. Theunissen, F.E.: From synchrony to sparseness. TRENDS Neurosci. 26, 61–64 (2003)

    Article  Google Scholar 

  14. Linster, C., Johnson, B.A., Yue, E., Morse, A., Xu, Z., Hingco, E.E., Choi, Y., Choi, M., Messiha, A., Leon, M.: Perceptual Correlates of Neural Representations Evoked by Odorant Enantiomers. J. Neurosci. 21, 9837–9843 (2001)

    Google Scholar 

  15. Schaefer, M.L., Young, D.A., Restrepo, D.: Olfactory Fingerprints for Major Histocompatibility Complex- Determined Body Odors. J. Neurosci. 21, 2481–2487 (2001)

    Google Scholar 

  16. Olshausen, B.A., Field, D.A.: Sparse coding of sensory inputs. Curr. Opinion Neurobiol. 14, 481–487 (2004)

    Article  Google Scholar 

  17. Gross, C.G., Desimone, R., Gattás, R.: Cortical visual areas of the temporal lobe. In: Woolsey, C.N. (ed.) Cortical Sensory Organization - Multiple Visual Areas, 2nd edn., pp. 187–216. The humana press, Totowa (1981)

    Google Scholar 

  18. Weliky, M., Fiser, J., Hunt, R.H., Wagner, D.N.: Coding of natural scenes in primary visual cortex. Neuron. 37, 703–718 (2003)

    Article  Google Scholar 

  19. DeWeese, M.R., Wehr, M., Zador, A.M.: Binary Spiking in Auditory Cortex. J. Neurosci. 23, 7940–7949 (2003)

    Google Scholar 

  20. Laurent, G.: Dynamical representation of odors by oscillating and evolving neural assemblies. Trends Neurosci. 19, 489–496 (1996)

    Article  Google Scholar 

  21. Crick, F., Koch, K.: Constraints on cortical and thalamic projections: the non-strong loop hypothesis. Nature 391, 245–450 (1997)

    Article  Google Scholar 

  22. Shepherd, G., Koch, C.: Appendix: dendritic electrotonus and synaptic integration. In: Shepherd, G. (ed.) Synaptic organization of the brain, pp. 439–475. The Oxford Univ. Press, Oxford (1990)

    Google Scholar 

  23. Koch, C.: Computation and the single neuron. Nature 385, 207–210 (1997)

    Article  Google Scholar 

  24. Hilgetag, C.C., Kaiser, M.: Clustered Organization of Cortical Connectivity. Neuroinformatics 2, 353–360 (2004)

    Article  Google Scholar 

  25. Totoni, G., Sporns, O., Edelman, G.M.: A measure for brain complexity: relating functional segregation and integration in the nervous system. Proc. Natl. Acad. Sci. USA 91, 5033–5037 (1994)

    Article  Google Scholar 

  26. Cherniak, C.: Component Placement Optimization in the Brain. J. Neurosci. 14, 2418–2427 (1994)

    Google Scholar 

  27. Buzsáki, G., Geisler, C., Henze, D.A., Wang, X-J.: Interneuron Diversity series: Circuit complexity and axon wiring economy of cortical interneurons. TRENDS Neurosci. 27, 186–193 (2004)

    Article  Google Scholar 

  28. Goodhill, G.J., Carreira-Perpiñán, M.: Cortical Columns. In: Nadel, L. (ed.) Encyclopedia of Cognitive Science, pp. 1–9. Macmillan Publishers Ltd., Basingstoke (2002)

    Google Scholar 

  29. Anderson, J.A., Silverstein, J.W., Ritz, S.A., Jones, R.S.: Distinctive features, categorical perception, and probability learning: some applications of a neural model. Psychol. Rev. 84, 413–451 (1977)

    Article  Google Scholar 

  30. Olshausen, B.A., Koch, C.: Selective visual attention. In: Arbib, M.A. (ed.) The Handbook of brain theory and neural networks, pp. 837–840. MIT press, Cambridge (1995)

    Google Scholar 

  31. Laurent Itti, L., Koch, C.: Computational modelling of visual attention. Nature Rev. 2, 194–203 (2001)

    Article  Google Scholar 

  32. Groh, J.M., Seidemann, E., Newsome, W.T.: Neurophysiology: Neural fingerprints of visual attention. Curr. Biol. 6, 1406–1409 (1996)

    Article  Google Scholar 

  33. Galin, D.: Comments on Epstein’s Neurocognitive Interpretation of William James’s Model of Consciousness. Consciousness and Cognition. 9, 576–583 (2000)

    Article  Google Scholar 

  34. Gobell, J.L., Tseng, C.-H., Sperling, G.: The spatial distribution of visual attention. Vision Research 44, 1273–1296 (2004)

    Article  Google Scholar 

  35. Baars, B.: In the theatre of consciousness: global workspace theory, a rigorous scientific theory of consciousness. J. Consciousness Studies 4, 292–309 (1997)

    Google Scholar 

  36. Lauwereyns, J.: Exogenous/Endogenous Control of Space-based/ Object-based Attention: Four Types of Visual Selection? Eur. J. Cogn. Psychol. 10, 41–74 (1998)

    Article  Google Scholar 

  37. Egly, R., Driver, J., Rafal, R.D.: Shifting visual attention between objects and locations: Evidence from normal and parietal lesion subjects. J. Exp. Psychol. Gen. 123, 161–177 (1994)

    Article  Google Scholar 

  38. Iani, C., Nicolleti, R., Rubichi, S., Umihà, C.: Shifting attention between objects. Cognitve brain Res. 11, 157–164 (2001)

    Article  Google Scholar 

  39. Abrams, R.A., Law, M.B.: Random visual noise impairs object-based attention. Exp. Brain Res. 142, 349–353 (2002)

    Article  Google Scholar 

  40. O’Connor, D.H., Fukui, M.M., Pinsk, M.A., Kastner, S.: Attention modulates responses in the human lateral geniculate nucleus. Nature neurosci. 5, 1203–1209 (2002)

    Article  Google Scholar 

  41. Yantis, S., Serences, J.T.: Cortical mechanisms of space-based and object-based attentional control. Curr. Opinion Neurobiol. 13, 187–193 (2003)

    Article  Google Scholar 

  42. Roelfsema, P.R., Lamme, V.A.F., Spekreijse, H.: Object-based attention in the primary visual cortex of the macaque monkey. Nature 395, 376–381 (1998)

    Article  Google Scholar 

  43. Raizada, R.D.S., Grossberg, S.: Context-Sensitive Binding by the Laminar Circuits of V1 and V2: A Unified Model of Perceptual Grouping, Attention, and Orientation Contrast. Visual Cognition 8, 431–466 (2001)

    Article  Google Scholar 

  44. Reynolds, J.H., Pasternak, T., Desimone, R.: Attention Increases Sensitivity of V4 Neurons. Neuron. 26, 703–714 (2000)

    Article  Google Scholar 

  45. Wolfe, J.: Visual attention. In: De Valois, K.K. (ed.) Seeing, 2nd edn., pp. 335–386. Academic Press, San Diego (2000)

    Google Scholar 

  46. Desimone, R.: Visual attention mediated by biased competition in extrastriate visual cortex. Phil.Trans. R. Soc. Lond. B 353, 1245–1255 (1998)

    Article  Google Scholar 

  47. Kastner, S., De Weerd, P., Desimone, R., Ungerleider, L.G.: Mechanisms of Directed Attention in the Human Extrastriate Cortex as Revealed by Functional MRI. Science 282, 108–111 (1998)

    Article  Google Scholar 

  48. Kastner, S., Pinsk, M.A., De Weerd, P., Desimone, R., Ungerleider, L.D.: Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation. Neuron. 22, 751–761 (1999)

    Article  Google Scholar 

  49. Usher, M., Niebur, E.: Modeling the Temporal Dynamics of IT Neurons in Visual Search: A Mechanism for Top-Down Selective Attention. J. Cognitive Neurosci. 8, 311–327 (1996)

    Article  Google Scholar 

  50. Rutishauser, U., Walther, D., Koch, C., Perona, P.: Is bottom-up attention useful for object recognition? In: IEEE International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 37–44. IEEE, Los Alamitos (2004)

    Google Scholar 

  51. Koch, C., Ullman, S.: Shifts in selective visual attention: towards the underlying neural circuitry. Hum. Neurobiol. 4, 219–227 (1985)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Pierre P Lévy Bénédicte Le Grand François Poulet Michel Soto Laszlo Darago Laurent Toubiana Jean-François Vibert

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Abramov, D.M., Vitral, R.W.F. (2007). Instant Pattern Filtering and Discrimination in a Multilayer Network with Gaussian Distribution of the Connections. In: Lévy, P.P., et al. Pixelization Paradigm. VIEW 2006. Lecture Notes in Computer Science, vol 4370. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71027-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71027-1_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71026-4

  • Online ISBN: 978-3-540-71027-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics