Skip to main content

Toward Understanding the Structure and Function of Cellular Interaction Networks

  • Chapter
Handbook of Large-Scale Random Networks

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 18))

Abstract

The components of a biological cell (such as proteins and molecules) interact on several levels, forming a variety of networks. Newly-developed high-throughput molecular biology methods now allow for the construction of genome-level interaction graphs. In parallel, high-throughput molecular abundance data paired with computational algorithms can be used to infer graphs of interactions and causal relationships. Graph-theoretical measures and network models are more and more frequently used to discern the functional constraints in the organization of biological networks. Perhaps most importantly, the combination of interaction and abundance information allows the formulation of predictive dynamic models. Here we review some of the dominant theoretical and computational methods used for the inference, graph-theoretical analysis and dynamic modeling of cellular networks, and we present two specific projects that integrate these three steps. Throughout this chapter we focus on presenting the significant advances in understanding biological systems allowed by graph theory. Conversely, we hope that the new biological data and results may inspire new directions in graph theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert and A. L. BarabĂ¡si, Statistical mechanics of complex networks, Reviews of Modern Physics., 74 (2002), 47–97.

    Article  MathSciNet  Google Scholar 

  2. R. Albert and H. G. Othmer, The topology of the regulatory interactions predicts the expression pattern of the segment polarity genes in Drosophila melanogaster, Journal of Theoretical Biology, 223 (2003), 1–18.

    Article  MathSciNet  Google Scholar 

  3. I. Albert and R. Albert, Conserved network motifs allow protein-protein interaction prediction, Bioinformatics, 20 (2004), 3346–3352.

    Article  Google Scholar 

  4. R. Albert, B. DasGupta, R. Dondi, et al., A novel method for signal transduction network inference from indirect experimental evidence, J. Comput. Biol., 14 (2007), 927–949.

    Article  MathSciNet  Google Scholar 

  5. B. Alberts, Molecular biology of the cell, Garland Pub (New York, 1994).

    Google Scholar 

  6. G. D. Bader, I. Donaldson, C. Wolting, et al., Bind—the biomolecular interaction network database, Nucleic Acids Res., 29 (2001), 242–245.

    Article  Google Scholar 

  7. G. BalĂ¡zsi, A. L. BarabĂ¡si and Z. N. Oltvai, Topological units of environmental signal processing in the transcriptional regulatory network of escherichia coli, Proc. Natl. Acad. Sci. U.S.A., 102 (2005), 7841–7846.

    Article  Google Scholar 

  8. A. L. BarabĂ¡si and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.

    Article  MathSciNet  Google Scholar 

  9. N. Barkai and S. Leibler Robustness in simple biochemical networks, Nature, 387 (1997), 913–917.

    Article  Google Scholar 

  10. J. Berg, M. Lassig and A. Wagner, Structure and evolution of protein interaction networks: A statistical model for link dynamics and gene duplications, BMC Evol. Biol., 4 (2004), 51.

    Article  Google Scholar 

  11. H. Bersini, T. Lenaerts and F. C. Santos, Growing biological networks: Beyond the gene-duplication model, J. Theor. Biol., 241 (2006), 488–505.

    Article  MathSciNet  Google Scholar 

  12. B. BollobĂ¡s and O. M. Riordan, Mathematical results on scale-free random graphs, in: S. Borhholdt, H. G. Schuster, editors, Handbook of graphs and networks, Wiley (Weinheim, 2003), pp. 1–32.

    Google Scholar 

  13. B. BollobĂ¡s, Graph theory: An introductory course, Springer-Verlag (New York, 1979).

    MATH  Google Scholar 

  14. H. Caron, B. van Schaik, M. van der Mee, et al., The human transcriptome map: Clustering of highly expressed genes in chromosomal domains, Science, 291 (2001), 1289–1292.

    Article  Google Scholar 

  15. M. Chaves, E. D. Sontag and R. Albert, Methods of robustness analysis for Boolean models of gene control networks, Syst. Biol. (Stevenage), 153 (2006), 154–167.

    Google Scholar 

  16. M. Chaves, R. Albert and E. D. Sontag, Robustness and fragility of Boolean models for genetic regulatory networks, J. Theor. Biol., 235 (2005), 431–449.

    Article  MathSciNet  Google Scholar 

  17. T. Chen, H. L. He and G. M. Church, Modeling gene expression with differential equations, Pac. Symp. Biocomput. (1999), 29–40.

    Google Scholar 

  18. C. Christensen, A. Gupta, C. D. Maranas, et al., Inference and graph-theoretical analysis of bacillus subtilis gene regulatory networks, Physica A, 373 (2007), 796–810.

    Article  Google Scholar 

  19. R. Cohen, S. Havlin and D. ben-Avraham, Structural properties of scale free networks, in: S. Borhholdt, H. G. Schuster, editors, Handbook of graphs and networks, Wiley (Weinheim, 2003), pp. 85–110.

    Google Scholar 

  20. G. von Dassow, E. Meir, E. M. Munro, et al., The segment polarity network is a robust developmental module, Nature, 406 (2000), 188–192.

    Article  Google Scholar 

  21. E. W. Dijkstra, A note on two problems in connection with graphs, Numerische Math., 1 (1959), 269–271.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. R. Dougherty, J. Barrera, M. Brun, et al., Inference from clustering with application to gene-expression microarrays, J. Comput. Biol., 9 (2002), 105–126.

    Article  Google Scholar 

  23. A. Drawid and M. Gerstein, A bayesian system integrating expression data with sequence patterns for localizing proteins: Comprehensive application to the yeast genome, J. Mol. Biol., 301 (2000), 1059–1075.

    Article  Google Scholar 

  24. P. ErdÅ‘s and A. RĂ©nyi, On the evolution of random graphs, Bull. Inst. Int. Stat., 38 (1961), 343.

    Google Scholar 

  25. C. L. Freeman, A set of measures of centrality based on betweenness, Sociometry 40 (1977), 35.

    Article  Google Scholar 

  26. N. Friedman, M. Linial, I. Nachman, et al., Using bayesian networks to analyze expression data, J. Comput. Biol., 7 (2000), 601–620.

    Article  Google Scholar 

  27. P. S. Gargalovic, M. Imura, B. Zhang, et al., Identification of inflammatory gene modules based on variations of human endothelial cell responses to oxidized lipids, Proc. Natl. Acad. Sci. U.S.A., 103 (2006), 12741–12746.

    Article  Google Scholar 

  28. J. I. Garrels, Ypd-a database for the proteins of Saccharomyces cerevisiae, Nucleic Acids Res., 24 (1996), 46–49.

    Article  Google Scholar 

  29. G. Giaever, A. M. Chu, L. Ni, et al., Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418 (2002), 387–391.

    Article  Google Scholar 

  30. L. Giot, J. S. Bader, C. Brouwer, et al., A protein interaction map of Drosophila melanogaster, Science, 302 (2003), 1727–1736.

    Article  Google Scholar 

  31. M. Girvan and M. E. J. Newman, Community structure in social and biological networks, Proc. Natl. Acad. Sci. (USA), 99 (2002), 7821.

    Article  MATH  MathSciNet  Google Scholar 

  32. L. Glass and S. A. Kauffman, The logical analysis of continuous, non-linear biochemical control networks, J. Theor. Biol., 39 (1973), 103–129.

    Article  Google Scholar 

  33. K. I. Goh, B. Kahng and D. Kim, Universal behavior of load distribution in scalefree networks, Phys. Rev. Lett., 87 (2001), 278701.

    Article  Google Scholar 

  34. N. Guelzim, S. Bottani, P. Bourgine, et al., Topological and causal structure of the yeast transcriptional regulatory network, Nature Genetics, 31 (2002), 60–63.

    Article  Google Scholar 

  35. R. Guimera and L. A. Nunes Amaral, Functional cartography of complex metabolic networks, Nature, 433 (2005), 895–900.

    Article  Google Scholar 

  36. A. Gupta, C. D. Maranas and R. Albert, Elucidation of directionality for coexpressed genes: Predicting intra-operon termination sites, Bioinformatics, 22 (2006), 209–214.

    Article  Google Scholar 

  37. A. Gupta, J. D. Varner and C. D. Maranas, Large-sale inference of the transcriptional regulation of bacillus subtilis, Computers and Chemical Engineering, 29 (2005), 565–576.

    Article  Google Scholar 

  38. J. D. Han, N. Bertin, T. Hao, et al., Evidence for dynamically organized modularity in the yeast protein-protein interaction network, Nature, 430 (2004), 88–93.

    Article  Google Scholar 

  39. L. H. Hartwell, J. J. Hopfield, S. Leibler, et al., From molecular to modular cell biology, Nature, 402 (1999), C47–52.

    Article  Google Scholar 

  40. J. Hasty, D. McMillen, F. Isaacs, et al., Computational studies of gene regulatory networks: In numero molecular biology, Nat. Rev. Genet., 2 (2001), 268–279.au]1 Juilee Thakar

    Article  Google Scholar 

  41. P. Holme, M. Huss and H. Jeong, Subnetwork hierarchies of biochemical pathways, Bioinformatics, 19 (2003), 532–538.

    Article  Google Scholar 

  42. S. Horvath, B. Zhang, M. Carlson, et al., Analysis of oncogenic signaling networks in glioblastoma identifies aspm as a molecular target, Proc. Natl. Acad. Sci. U.S.A., 103 (2006): 17402–17407.

    Article  Google Scholar 

  43. A. M. Huerta, H. Salgado, D. Thieffry, et al., Regulondb: A database on transcriptional regulation in escherichia coli, Nucleic Acids Res., 26 (1998), 55–59.

    Article  Google Scholar 

  44. D. H. Irvine and M. A. Savageau, Efficient solution of nonlinear ode’s expressed in S-system canonical form, SIAM Journal of Numerical Analysis, 27 (1990), 704–735.

    Article  MATH  MathSciNet  Google Scholar 

  45. H. Jeong, B. Tombor, R. Albert, et al., The large-scale organization of metabolic networks, Nature, 407 (2000), 651–654.

    Article  Google Scholar 

  46. H. Jeong, S. P. Mason, A. L. BarabĂ¡si, et al., Lethality and centrality in protein networks, Nature, 411 (2001), 41–42.

    Article  Google Scholar 

  47. S. Kachalo, R. Zhang, E. Sontag, et al., Net-synthesis: A software for synthesis, inference and simplification of signal transduction networks, Bioinformatics, 24 (2008), 293–295.

    Article  Google Scholar 

  48. S. Kalir, S. Mangan and U. Alon, A coherent feed-forward loop with a sum input function prolongs flagella expression in escherichia coli, Mol. Syst. Biol., 1 (2005), 2005–0006.

    Article  Google Scholar 

  49. M. Kanehisa and S. Goto, Kegg: Kyoto encyclopedia of genes and genomes, Nucleic Acids Res., 28 (2000), 27–30.

    Article  Google Scholar 

  50. P. D. Karp, M. Riley, M. Saier, et al., The ecocyc and metacyc databases, Nucleic Acids Res., 28 (2000), 56–59.

    Article  Google Scholar 

  51. V. Latora and M. Marchiori, Efficient behavior of small-world networks, Physical Review Letters, 87 (2001), 198701–198704.

    Article  Google Scholar 

  52. T. I. Lee, N. J. Rinaldi, F. Robert, et al., Transcriptional regulatory networks in Saccharomyces cerevisiae, Science, 298 (2002), 799–804.

    Article  Google Scholar 

  53. N. Lemke, F. Heredia, C. K. Barcellos, et al., Essentiality and damage in metabolic networks, Bioinformatics, 20 (2004), 115–119.

    Article  Google Scholar 

  54. S. Li, C. M. Armstrong, N. Bertin, et al., A map of the interactome network of the metazoan C. elegans, Science, 303 (2004), 540–543.

    Article  Google Scholar 

  55. S. Li, S. M. Assmann and R. Albert, Predicting essential components of signal transduction networks: A dynamic model of guard cell abscisic acid signaling, PLoS Biol., 4 (2006), e312.

    Article  Google Scholar 

  56. N. M. Luscombe, M. M. Babu, H. Y. Yu, et al., Genomic analysis of regulatory network dynamics reveals large topological changes, Nature, 431 (2004), 308–312.

    Article  Google Scholar 

  57. H. W. Ma and A. P. Zeng, The connectivity structure, giant strong component and centrality of metabolic networks, Bioinformatics, 19 (2003), 1423–1430.

    Article  Google Scholar 

  58. A. Ma’ayan, R. D. Blitzer and R. Iyengar, Toward predictive models of mammalian cells, Annu. Rev. Biophys. Biomol. Struct. (2004), 319–349.

    Google Scholar 

  59. A. Ma’ayan, S. L. Jenkins, S. Neves, et al., Formation of regulatory patterns during signal propagation in a mammalian cellular network, Science, 309 (2005), 1078–1083.

    Article  Google Scholar 

  60. R. Mahadevan and B. O. Palsson, Properties of metabolic networks: Structure versus function, Biophys. J., 88 (2005), L07–09.

    Article  Google Scholar 

  61. S. Mangan, A. Zaslaver and U. Alon, The coherent feedforward loop serves as a sign-sensitive delay element in transcription networks, J. Mol. Biol., 334 (2003), 197–204.

    Article  Google Scholar 

  62. E. M. Marcotte, I. Xenarios and D. Eisenberg, Mining literature for protein-protein interactions, Bioinformatics, 17 (2001), 359–363.

    Article  Google Scholar 

  63. S. Maslov and K. Sneppen, Specificity and stability in topology of protein networks, Science, 296 (2002), 910–913.

    Article  Google Scholar 

  64. L. Mendoza and E. R. Alvarez-Buylla, Dynamics of the genetic regulatory network for Arabidopsis thaliana flower morphogenesis, J. Theor. Biol., 193 (1998), 307–319.

    Article  Google Scholar 

  65. C. von Mering, L. J. Jensen, M. Kuhn, et al., String 7-recent developments in the integration and prediction of protein interactions, Nucleic Acids. Res. (2006).

    Google Scholar 

  66. H. W. Mewes, C. Amid, R. Arnold, et al., Mips: Analysis and annotation of proteins from whole genomes, Nucleic Acids Res., 32 (2004), D41–44.

    Article  Google Scholar 

  67. R. Milo, S. Shen-Orr, S. Itzkovitz, et al., Network motifs: Simple building blocks of complex networks, Science, 298 (2002), 824–827.

    Article  Google Scholar 

  68. M. E. J. Newman, Random graphs as models of networks, in: S. Bornholdt, H. G. Schuster, editor, Handbook of graphs and networks, Wiley (Weinheim, 2003), pp 35–65.

    Google Scholar 

  69. M. E. J. Newman, S. H. Strogatz and D. J. Watts, Random graphs with arbitrary degree distributions and their applications, Physical Review E., 64 (2001), 026118.

    Article  Google Scholar 

  70. A. Pandey and M. Mann, Proteomics to study genes and genomes, Nature, 405 (2000), 837–846.

    Article  Google Scholar 

  71. J. A. Papin and B. O. Palsson, Topological analysis of mass-balanced signaling networks: A framework to obtain network properties including crosstalk, J. Theor. Biol., 227 (2004), 283–297.

    Article  Google Scholar 

  72. J. A. Papin, T. Hunter, B. O. Palsson, et al., Reconstruction of cellular signalling networks and analysis of their properties, Nat. Rev. Mol. Cell. Biol., 6 (2005), 99–111.

    Article  Google Scholar 

  73. R. Pastor-Satorras, E. Smith and R. V. Sole, Evolving protein interaction networks through gene duplication, Journal of Theoretical Biology, 222 (2003), 199–210.

    Article  MathSciNet  Google Scholar 

  74. S. Peri, J. D. Navarro, T. Z. Kristiansen, et al., Human protein reference database as a discovery resource for proteomics, Nucleic Acids Res., 32 (2004), D497–501.

    Article  Google Scholar 

  75. J. Qian, M. Dolled-Filhart, J. Lin, et al., Beyond synexpression relationships: Local clustering of time-shifted and inverted gene expression profiles identifies new, biologically relevant interactions, J. Mol Biol., 314 (2001), 1053–1066.

    Article  Google Scholar 

  76. J. C. Rain, L. Selig, H. De Reuse, et al., The protein-protein interaction map of helicobacter pylori, Nature, 409 (2001), 211–215.

    Article  Google Scholar 

  77. E. Ravasz, A. L. Somera, D. A. Mongru, et al., Hierarchical organization of modularity in metabolic networks, Science, 297 (2002), 1551–1555.

    Article  Google Scholar 

  78. A. W. Rives and T. Galitski, Modular organization of cellular networks, Proceedings of the National Academy of Sciences of the United States of America, 100 (2003), 1128–1133.

    Article  Google Scholar 

  79. J. F. Rual, K. Venkatesan, T. Hao, et al., Towards a proteome-scale map of the human protein-protein interaction network, Nature, 437 (2005), 1173–1178.

    Article  Google Scholar 

  80. M. R. Said, T. J. Begley, A. V. Oppenheim, et al., Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 101 (2004), 18006–18011.

    Article  Google Scholar 

  81. S. S. Shen-Orr, R. Milo, S. Mangan, et al., Network motifs in the transcriptional regulation network of escherichia coli, Nat. Genet., 31 (2002), 64–68.

    Article  Google Scholar 

  82. I. Shmulevich, E. R. Dougherty, S. Kim, et al., Probabilistic Boolean networks: A rule-based uncertainty model for gene regulatory networks, Bioinformatics, 18 (2002), 261–274.

    Article  Google Scholar 

  83. V. Spirin and L. A. Mirny, Protein complexes and functional modules in molecular networks, Proc. Natl. Acad. Sci. U.S.A., 100 (2003), 12123–12128.

    Article  Google Scholar 

  84. B. J. Stapley and G. Benoit, Biobibliometrics: Information retrieval and visualization from co-occurrences of gene names in medline abstracts, Pac. Symp. Biocomput (2000), 529–540.

    Google Scholar 

  85. R. Tanaka, Scale-rich metabolic networks, Phys. Rev. Lett., 94 (2005), 168101.

    Article  Google Scholar 

  86. J. Thakar, M. Pilione, G. Kirimanjeswara, et al., Modeling systems-level regulation of host immune responses, PLoS. Comput. Biol., 3 (2007), e109.

    Article  Google Scholar 

  87. J. J. Tyson, K. C. Chen, B. Novak, Sniffers, buzzers, toggles and blinkers: Dynamics of regulatory and signaling pathways in the cell, Curr. Opin. Cell. Biol., 15 (2003), 221–231.

    Article  Google Scholar 

  88. P. Uetz, L. Giot, G. Cagney, et al., A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae, Nature, 403 (2000), 623–627.

    Article  Google Scholar 

  89. B. Vogelstein, D. Lane and A. J. Levine, Surfing the p53 network, Nature, 408 (2000), 307–310.

    Article  Google Scholar 

  90. A. Wagner and D. A. Fell, The small world inside large metabolic networks, Proceedings of the Royal Society of London Series B-Biological Sciences, 268 (2001), 1803–1810.

    Article  Google Scholar 

  91. A. Wagner, How the global structure of protein interaction networks evolves, Proc. Biol. Sci., 270 (2003), 457–466.

    Article  Google Scholar 

  92. A. Wagner, Reconstructing pathways in large genetic networks from genetic perturbations, J. Comput. Biol., 11 (2004), 53–60.

    Article  Google Scholar 

  93. D. J. Watts and S. H. Strogatz, Collective dynamics of’ small-world’ networks, Nature, 393 (1998), 440–442.

    Article  Google Scholar 

  94. E. Wingender, P. Dietze, H. Karas, et al., Transfac: A database on transcription factors and their DNA binding sites, Nucleic Acids Res, 24 (1996), 238–241.

    Article  Google Scholar 

  95. S. Wuchty, Z. N. Oltvai and A. L. BarabĂ¡si, Evolutionary conservation of motif constituents in the yeast protein interaction network, Nat. Genet., 35 (2003), 176–179.

    Article  Google Scholar 

  96. I. Xenarios, L. Salwinski, X. J. Duan, et al., Dip, the database of interacting proteins: A research tool for studying cellular networks of protein interactions, Nucleic Acids Res., 30 (2002), 303–305.

    Article  Google Scholar 

  97. S. H. Yook, Z. N. Oltvai and A. L. BarabĂ¡si, Functional and topological characterization of protein interaction networks, Proteomics, 4 (2004), 928–942.

    Article  Google Scholar 

  98. J. Yu, V. A. Smith, P. P. Wang, et al., Advances to bayesian network inference for generating causal networks from observational biological data, Bioinformatics, 20 (2004), 3594–3603.

    Article  Google Scholar 

  99. L. V. Zhang, O. D. King, S. L. Wong, et al., Motifs, themes and thematic maps of an integrated Saccharomyces cerevisiae interaction network, J. Biol., 4 (2005), 6.

    Article  Google Scholar 

  100. W. Zhao, E. Serpedin and E. R. Dougherty, Inferring gene regulatory networks from time series data using the minimum description length principle, Bioinformatics (2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 JĂ¡nos Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Thakar, J., Christensen, C., Albert, R. (2008). Toward Understanding the Structure and Function of Cellular Interaction Networks. In: BollobĂ¡s, B., Kozma, R., MiklĂ³s, D. (eds) Handbook of Large-Scale Random Networks. Bolyai Society Mathematical Studies, vol 18. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69395-6_6

Download citation

Publish with us

Policies and ethics