Skip to main content

Allelic trans-sensing and Imprinting

  • Chapter
Genomic Imprinting

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 25))

Abstract

Homologous chromosome pairing is known to be an essential point in the meiotic process, because it allows interchromosomal exchanges (crossovers) to occur in a balanced way. Interactions between homologous loci has been shown to occur in somatic cells of plants and animals. In general, somatic pairing is less extensive than in the germ cells. Although their functional significance remains unclear, recent observations show that homologous interactions are more widespread than previously thought. It has also become apparent that imprinted chromosomal regions can be involved in homologous pairing in mammalian somatic cells. This chapter will focus on the description of long-range homologous interactions and their implications in the conrext of imprinted chromosomal regions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Arnoldus E, Peters A, Bots G, Raap A, vander Ploeg M (1989) Somatic pairing of chromosome 1 centromeres in interphase nuclei of human cerebellum. Hum Genet 83: 231–234

    Article  PubMed  CAS  Google Scholar 

  • Bennett S, Wilson A, Esposito L, Bouzekri N, Undlien D, Cucca F, Nistico L, Buzzetti R, Group I, Bosi E, Pociot F, Nerup J, Chambon-Thomsen A, Pugliese A, Shield J, McKinney P, Bain S, Polychronakos C, Todd J (1997) Insulin VNTR allele-specific effect in type 1 diabetes depends on identity of untransmitted paternal allele. Nature Genetics 17: 350–352

    Google Scholar 

  • Bingham P (1997) Cosuppression comes to the animals. Cell 90: 385–387

    Article  PubMed  CAS  Google Scholar 

  • Chess A, Simon I, Cedar H, Axel R (1994) Allelic inactivation regulates olfactory receptor gene expression. Cell 78: 823–835

    Article  PubMed  CAS  Google Scholar 

  • Coe E (1968) Heritable repression due to paramutation in maize. Science 162: 9–25

    Article  Google Scholar 

  • Deltour L, Montagutelli X, Guenet J-L, Jami J, Pàldi A (1995) Tissue-and developmental stage-specific imprinting of the mouse proinsulin gene Ins2. Dev Biol 168: 686–688

    Article  PubMed  CAS  Google Scholar 

  • Dreesen T, Henikoff S, Loughney K (1991) A pairing-sensitive element that mediates transinactivation is associated with the Drosophila brown gene. Genes Devel 5: 331–340

    Article  PubMed  CAS  Google Scholar 

  • Duvillié B, Bucchini D, Tang T, Jami J, Pàldi A (1998) Imprinting at the mouse Ins2 locus: Evidence for cis-and trans-allelic interactions. Genomics 47: 52–57

    Article  PubMed  Google Scholar 

  • Forne T, Oswald J, Dean W, Saam J, Bailleul B, Dandolo L, Tilghman S, Walter J, Reik W (1997) Loss of the maternal HI9 gene induces changes in Igf2 methylation in both cis and trans. Proc Natl Acad Sci USA 94: 10243–10248

    Article  PubMed  CAS  Google Scholar 

  • Giddings S, King C, Harman K, Flood J, Carnaghi L (1994) Allele specific inactivation of insulin 1 and 2, in the mouse yolk sac, indicates imprinting. Nat Genet 6: 310–313

    Article  PubMed  CAS  Google Scholar 

  • Hatada I, Nabetani A, Arai Y, Ohishi S, Suzuki M, Miyabara S, Nishimune Y, Mukai T (1997) Aberrant methylation of an imprinted gene U2af1-rsl (SP2) caused by its own transgene. J Biol Chem 272: 9120–9122

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S (1997) Nuclear organization and gene expression: homologous pairing and long-range interaction. Curr Opin Cell Biol 9: 388–395

    Article  PubMed  CAS  Google Scholar 

  • Hiraoka Y, Dernburg A, Parmelee S, Rykowski M, Agard D, Sedat J (1993) The onset of homologous chromosome pairing during Drosophila melanogaster embryogenesis. J Cell Biol 120: 591–600

    Article  PubMed  CAS  Google Scholar 

  • Hollick J, Dorweiler J, Chandler V (1997) Paramutation and related allelic interactions. Trends Genet 13: 302–308

    Article  PubMed  CAS  Google Scholar 

  • Jack JW, Judd BH (1979) Allelic pairing and gene regulation: a model for the zeste-white interaction in Drosophyla melanogaster. Proc Natl Acad Sci USA 76: 1368–1372

    Article  PubMed  CAS  Google Scholar 

  • Kitsberg D, Selig S, Brandeis M, Simon I, Keshet I, Driscoll D, Nicholls R, Cedar H (1993) Allele-specific replication timing of imprinted gene regions. Nature 364: 459–463

    Article  PubMed  CAS  Google Scholar 

  • Knoll J, Cheng S, Lalande M (1994) Allele specificity of DNA replication timing in the Angelman/ Prader-Willi syndrome imprinted chromosomal region. Nat Genet 6: 41–46

    Article  PubMed  CAS  Google Scholar 

  • Kopczynski C, Muskavitch M (1992) Introns excised from the Delta primary transcript are localized near sites of Delta transcription. J Cell Sci 119: 503–512

    Article  CAS  Google Scholar 

  • LaSalle J, Lalande M (1995) Domainorganization of allele-specific replication within the GABRB3 gene cluster requires a biparental 15q11–13 contribution. Nat Genet 9: 386–394

    Article  PubMed  CAS  Google Scholar 

  • LaSalle JM, Lalande M (1996) Homologous association of oppositely imprinted chromosomal domains. Science 272: 725–728

    Article  PubMed  CAS  Google Scholar 

  • Lewis E (1954) The theory and application of a new method of detecting chromosomal rearrangements in Drosophyla melanodaster. Amer Nat 88: 225–239

    Article  Google Scholar 

  • Marshall WF, Fung JC, and Sedat J (1997) Deconstructing the nucleus: global architecture from local interactions. Curr Opin Genet Devel 7: 259–263

    Article  CAS  Google Scholar 

  • Monk M (1990) Variation in epigenetic inheritance. Trends Genet 6: 110–114

    Article  PubMed  CAS  Google Scholar 

  • Pà1di A, Gyapay G, and Jami J (1995) Imprinted chromosomal regions of the human genome display sex-specific meiotic recombination frequencies. Curr Biol 5: 1030–1035

    Article  PubMed  Google Scholar 

  • Robinson WP, and Lalande M (1995) Sex-specific meiotic recombination in the Prader-Willi/Angelman syndrome imprinted region. Human Mol Genet 4: 801–806

    Article  CAS  Google Scholar 

  • Shemer R, Birger Y, Dean W, Reik W, Riggs A, and Razin A (1996) Dynapic methylation adjustment and counting as part of imprinting mechanisms. Proc Natl Acad Sci USA 93: 6371–6373

    Article  PubMed  CAS  Google Scholar 

  • Sun F, Dean W, Kelsey G, Allen N, and Reik W (1997) Trans-activation of Igf2 in a mouse model of Beckwith-Wiedemann syndrome. Nature 389: 809–815

    Article  PubMed  CAS  Google Scholar 

  • Szabo P, Mann J (1996) Maternal and paternal genomes function independently in mouse ova in establishing expression of the imprinted genes Snrpn and Igf2r: no evidence for allelic trans-sensing and counting mechanisms. EMBO J 15: 6018–6025

    PubMed  CAS  Google Scholar 

  • Tartof K, Henikoff S (1991) Trans-sensing effects from Drosophila to Humans. Cell 65: 201–203

    Article  PubMed  CAS  Google Scholar 

  • Thomas J (1995) Genomic imprinting proposed as a surveillance mechanism for chromosome loss. Proc Natl Acad Sci USA 92: 480–482

    Article  PubMed  CAS  Google Scholar 

  • Tsai J, Silver L (1991) Escape from genomic imprinting at the mouse T-associated maternal effect (Tme) locus. Genetics 129: 1159–1166

    PubMed  CAS  Google Scholar 

  • Wu C (1993) Transvection, nuclear structure, and chromatin proteins. J Cell Biol 120: 587–590

    Article  PubMed  CAS  Google Scholar 

  • Wu CT, Goldberg ML (1989) The Drosophila zeste gene and transvection. Trends Genet 5: 189–194

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Pàldi, A., Jouvenot, Y. (1999). Allelic trans-sensing and Imprinting. In: Ohlsson, R. (eds) Genomic Imprinting. Results and Problems in Cell Differentiation, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69111-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69111-2_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-21956-0

  • Online ISBN: 978-3-540-69111-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics