Skip to main content

Mathematical and Numerical Modelling of Fluid Flow in Elastic Tubes

  • Conference paper
Book cover Computational Science and High Performance Computing III

Part of the book series: Notes on Numerical Fluid Mechanics and Multidisciplinary Design ((NNFM,volume 101))

  • 532 Accesses

Abstract

The study of fluid flow inside compliant vessels, which are deformed under an action of the fluid, is important due to many biochemical and biomedical applications, e.g. the flows in blood vessels.

The mathematical problem consists of the 3D Navier-Stokes equations for incompressible fluids coupled with the differential equations, which describe the displacements of the vessel wall (or elastic structure). We study the fluid flow in a tube with different types of boundaries: inflow boundary, outflow boundary and elastic wall and prescribe different boundary conditions of Dirichlet- and Neumann types on these boundaries. The velocity of the fluid on the elastic wall is given by the deformation velocity of the wall.

In this publication we present the mathematical modelling for the elastic structures based on the shell theory, the simplifications for cylinder-type shells, the simplifications for arbitrary shells under special assumptions, the mathematical model of the coupled problem and some numerical results for the pressure-drop problem with cylindrical elastic structure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antman, S.S.: Nonlinear problems of elasticity. Springer, New York (1995)

    MATH  Google Scholar 

  2. Bänsch, E.: Numerical methods for the instationary Navier-Stokes equations with a free capillary surface. PhD thesis, Freiburg University, Freiburg (1998)

    Google Scholar 

  3. Chambolle, E., Desjardins, B., Esteban, M.J., Grandmont, C.: J. Math. Fluid Mech. 7, 368–404 (2005)

    Google Scholar 

  4. Cheng, C.H.A., Coutand, D., Shkoller, S. (2006) Navier-Stokes equations interacting with a nonlinear elastic fluid shell 22 (November 2006) ArXiv:math.AP/0604313 v2

    Google Scholar 

  5. Cheng, C.H.A., Coutand, D., Shkoller, S.: SIAM J. Math. Anal. 39(3), 742–800 (2007)

    Google Scholar 

  6. Ciarlet, P.G.: Mathematical elasticity, Volume I: three-dimensional elasticity. Studies in mathematics and its applications, vol. 20. North-Holland, Amsterdam (1988)

    Book  MATH  Google Scholar 

  7. Formaggia, L., Gerbeau, J.F., Nobile, F., Quarteroni, A.: On the coupling of 3D and 1D Navier-Stokes equations for flow problems in compliant vessels. Technical report INRIA RR–3862, 1–26 (2000)

    Google Scholar 

  8. Heil, M.: J. Fluid. Mech. 353, 285–312 (1997)

    Google Scholar 

  9. Höhn, B.: Numerik für die Marangoni-Konvektion beim Floating-Zone Verfahren. PhD Thesis, Freiburg University, Freiburg (1999)

    Google Scholar 

  10. Koiter, W.T.: A consistent first approximation in the general theory of thin elastic shells, part 1: foundations and linear thery. Technical report, Laboratory of Applied Mechanics, Delft (1959)

    Google Scholar 

  11. Liepsch, D.W.: Biorheology 23, 395–433 (1986)

    Google Scholar 

  12. Novozhilov, V.V.: The Theory of thin shells. P. Noordhoff Ltd., Groningen. Translated by Lowe, P.G (1959)

    Google Scholar 

  13. PaÏdoussis M.P.: Fluid-structure interaction. Slender structures and axial flow, vol. I. Academic Press, London (1998)

    Google Scholar 

  14. Perktold, K., Rappitsch, G.: ZAMM 74, T477–T480 (1994)

    Google Scholar 

  15. Perktold, K., Rappitsch, G.: Mathematical modelling of local arterial flow and vessel mechanics. In: Crolet J, Ohayon R (eds.) Computational methods for fluid structure interaction. Pitman Research Notes in Mathematics (1994)

    Google Scholar 

  16. Pertsev, A.K., Platonov, E.G.: Dynamic of shells and plates. Non-stationary problems. Sudostroenie, Leningrad (in Russian) (1987)

    Google Scholar 

  17. Quarteroni, A., Veneziani, A.: Modeling and simulation of blood flow problems. In: Bristeau, M.O., Etgen, G., Fitzgibbon, W., Lions, J.L., Periaux, J., Wheeler, M.F. (eds.) Computational science for the 21st Century. J.Wiley & sons, Chichester (1997)

    Google Scholar 

  18. Quarteroni, A., Tuveri, M., Veneziani, A.: Comput. Visual. Sci. 2, 163–197 (2000)

    Google Scholar 

  19. Quarteroni, A.: Mathematical modelling and numerical simulation of the cardiovascular system. In: Ayache, N. (ed.) Modelling of living systems. Handbook of Numerical Analysis Series. Elsevier, Amsterdam (2002)

    Google Scholar 

  20. Timoshenko, S.: Vibration problems in engineering. D. Van Nostrand Company, Inc, Toronto, New York, London (1953)

    Google Scholar 

  21. Volmir, A.S.: Nonlinear dynamics of membrans and shells. Moscow, Nauka (1972)

    Google Scholar 

  22. Volmir, A.S.: Shells in a stream of fluid and gas. Problems of aeroelasticity. Moscow, Nauka (in Russian) (1976)

    Google Scholar 

  23. Washizu, K.: Variational methods in elasticity and plasticity. Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt (1982)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bänsch, E., Goncharova, O., Koop, A., Kröner, D. (2008). Mathematical and Numerical Modelling of Fluid Flow in Elastic Tubes. In: Krause, E., Shokin, Y.I., Resch, M., Shokina, N. (eds) Computational Science and High Performance Computing III. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 101. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69010-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69010-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69008-5

  • Online ISBN: 978-3-540-69010-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics