Skip to main content

Surface Modification of Biomaterials and Tissue Engineering Scaffolds for Enhanced Osteoconductivity

  • Conference paper
3rd Kuala Lumpur International Conference on Biomedical Engineering 2006

Part of the book series: IFMBE Proceedings ((IFMBE,volume 15))

Abstract

The majority of currently used implant materials in orthopaedics lacks osteoconductivity. This paper reviews our efforts of using a number of surface modification techniques (hydrothermal-electrochemical deposition, plasma spraying, spraying-and-sintering, ion beam assisted deposition, and biomimetic deposition) to improve the osteoconductivity of metallic, polymeric and ceramic biomaterials. Furthermore, biomimetic processes have been employed to render non-bioactive polymer tissue engineering scaffolds osteoconductive. Surface modification has an important role to play in the development of materials for human tissue repair and regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Black, G. Hastings, (Eds.), Handbook of Biomaterial Properties, Chapman & Hall, London, 1998

    Google Scholar 

  2. B.D. Ratner, A.S. Hoffman, F.J. Schoen, J.E. Lemons, (Eds.), Biomaterials Science: An introduction to materials in medicine, 2nd Edn., Academic Press, San Diego, 2004

    Google Scholar 

  3. L.L. Hench, J. Wilson, (Eds.), An Introduction to Bioceramics, World Scientific, Singapore, 1993

    Google Scholar 

  4. L.L. Hench, “Bioceramics: from Concept to Clinic”, Journal of the American Ceramic Society, 74 (1991), 1487–1510

    Article  CAS  Google Scholar 

  5. T. Kokubo, “Bioactivity of Glasses and Glass-Ceramics”, in Bone-Bonding Biomaterials, Edited by P. Ducheyne, T. Kokubo and C.A. van Blitterswijk, Reed Healthcare Communications, Leiderdorp, 1992

    Google Scholar 

  6. R. Skalak, C.F. Fox, (Eds.), Tissue Engineering, Alan R.Liss Inc., New York, 1988

    Google Scholar 

  7. L.V. McIntire, (Ed.), WTEC Panel on Tissue Engineering Research: Final Report, Academic Press, San Diego, 2003

    Google Scholar 

  8. R.P. Lanza, R. Langer, J. Vacanti, (Eds.), Principles of Tissue Engineering, 2nd Edn., Academic Press, San Diego, 2000

    Google Scholar 

  9. A. Atala, R.P. Lanza, (Eds.), Methods of Tissue Engineering, Academic Press, San Diego, 2002

    Google Scholar 

  10. R.R. Kumar, M. Wang, “Hydrothermal-Electrochemical Deposition of Hydroxyapatite on Brushite Single Crystals Grown by the Gel Technique”, Proceedings of the 4 th Asian Symposium on Biomedical Materials, Singapore, 1999, 31–32

    Google Scholar 

  11. R.R. Kumar, M. Wang, “Growth of Single Crystals of Brushite by Gel Technique and Subsequent Biomimetic Deposition of Hydroxyapatite on Brushite Crystals”, Transactions of the 6 th World Biomaterials Congress, Hawaii, USA, 2000, 1310

    Google Scholar 

  12. R.R. Kumar, M. Wang, “Biomimetic Deposition of Hydroxyapatite on Brushite Single Crystals Grown by the Gel Technique”, Materials Letters, 49 (2001), 15–19

    Article  Google Scholar 

  13. T. Kokubo, H. Kushitani, S. Sakka, T. Kitsugi, T. Yamamuro, “Solutions Able to Reproduce in vivo Surface-structure Changes in Bioactive Glass-Ceramic A-W”, Journal of Biomedical Materials Research, Vol.24 (1990), 721–734

    Article  CAS  PubMed  Google Scholar 

  14. X.Y. Yang, M. Wang, K.A. Khor, Y. Wang, “Mechanical and Structural Characterisation of Bioactive Coatings”, Bioceramics, 11 (1998), 227–230

    Google Scholar 

  15. M. Wang, X.Y. Yang, K.A. Khor, Y. Wang, “Preparation and Characterisation of Bioactive Monolayer and Functionally Graded Coatings”, Journal of Materials Science: Materials in Medicine, 10 (1999), 269–273

    PubMed  Google Scholar 

  16. X.J. Ye, M. Wang, K.A. Khor, “Influence of Surface Conditions on Adhesion of Hydroxyapatite Coating to Titanium Substrate”, Proceedings of the 8 th International Conference on Processing and Fabrication of Advanced Materials, Singapore, 1999, 291–298

    Google Scholar 

  17. M. Wang, X.J. Ye, K.A. Khor, “Assessing Interfacial Properties of Plasma Sprayed Bioceramic Coating on Metal Substrate Using Indentation Techniques”, Transactions of the 7 th World Biomaterials Congress, Sydney, Australia, 2004, 1789

    Google Scholar 

  18. R.R. Kumar, M. Wang, “Manufacture and Characterisation of Functionally Graded Bioactive Coatings”, Proceedings of the 8 th International Conference on Processing and Fabrication of Advanced Materials, Singapore, 1999, 133–140

    Google Scholar 

  19. R.R. Kumar, M. Wang, “Developing Hydroxyapatite/Glass Functionally Graded Coating for Clinical Applications”, Proceedings of the 10 th International Conference on Biomedical Engineering, Singapore, 2000, 265–266

    Google Scholar 

  20. R.R. Kumar, M. Wang, P. Ducheyne, “Production and Evaluation of Hydroxyapatite/Tricalcium Phosphate Functionally Graded Coating”, Key Engineering Materials, 192–195 (2001), 231–234

    Article  Google Scholar 

  21. R.R. Kumar, M. Wang, “Functionally Graded Bioactive Coatings of Hydroxyapatite/Titanium Oxide Composite System”, Materials Letters, 55 (2002), 133–137

    Article  Google Scholar 

  22. R.R. Kumar, M. Wang, “Modulus and Hardness Evaluations of Sintered Bioceramic Powders and Functionally Graded Bioactive Composites by Nano-indentation Technique”, Materials Science and Engineering A: Structural materials: properties, microstructure and processing, 338 (2002), 230–236

    Article  Google Scholar 

  23. C.X. Wang, Z.Q. Chen, M. Wang, Z.Y. Liu, P.L. Wang, “Ion-Beam-Sputtering/Mixing Deposition of Calcium Phosphate Coatings: I. Effects of Ion Mixing Beams”, Journal of Biomedical Materials Research, 55 (2001), 587–595

    Article  CAS  PubMed  Google Scholar 

  24. C.X. Wang, Z.Q. Chen, M. Wang, Z.Y. Liu, P.L. Wang, S.X. Zheng, “Functionally Graded Calcium Phosphate Coatings Produced by Ion Beam Sputtering/Mixing Deposition”, Biomaterials, 22 (2001), 1619–1626

    Article  CAS  PubMed  Google Scholar 

  25. C.X. Wang, Z.Q. Chen, L.M. Guan, M. Wang, Z.Y. Liu, P.L. Wang, “Fabrication and Characterisation of Graded Calcium Phosphate Coatings by Ion Beam Sputtering/Mixing Deposition”, Nuclear Instruments and Methods in Physics Research, B 179 (2001), 364–372

    Article  Google Scholar 

  26. C.X. Wang, Z.Q. Chen, M. Wang, “Fabrication and Characterisation of Bioactive Glass Coatings Produced by the Ion Beam Sputter Deposition Technique”, Journal of Materials Science: Materials in Medicine, 13 (2002), 247–251

    CAS  PubMed  Google Scholar 

  27. J.M. Wu, M. Wang, S. Hayakawa, K. Tsuru, A. Osaka, “Direct Deposition of Rutile Layer on Polymer Substrates to Induce Bioactivity In Vitro”, Key Engineering Materials, 309–311 (2006), 419–422

    Article  Google Scholar 

  28. C.X. Wang, M. Wang, “Electrochemical Impedance Study of the Nucleation and Growth of Apatite on Titanium Pretreated with NaOH Solution”, Transactions of the Society For Biomaterials 27 th Annual Meeting, Minnesota, USA, 2001, 101

    Google Scholar 

  29. C.X. Wang, M. Wang, “Mechanism of Apatite Formation on Titanium Treated with Alkaline Solution”, Transactions of the Society For Biomaterials 27 th Annual Meeting, Minnesota, USA, 2001, 317

    Google Scholar 

  30. C.X. Wang, M. Wang, X. Zhou, “Electrochemical Impedance Spectroscopy Study of the Nucleation and Growth of Apatite on Chemically Treated Titanium”, Langmuir, 18 (2002), 7641–7647

    Article  CAS  Google Scholar 

  31. C.X. Wang, X. Zhou, M. Wang, “Mechanism of Apatite Formation on Pure Titanium Treated with Alkaline Solution”, Bio-Medical Materials and Engineering, 14 (2004), 5–11

    CAS  PubMed  Google Scholar 

  32. J.M. Wu, M. Wang, S. Hayakawa, K. Tsuru, A. Osaka, “In Vitro Bioactivity of Hydrogen Peroxide Modified Titanium: Effects of Surface Morphology and Film Thickness”, Key Engineering Materials, 309–311 (2006), 407–410

    Article  Google Scholar 

  33. J.M. Wu, M. Wang, Y.W. Li, F.D. Zhao, X.J. Ding, A. Osaka, “Crystallization of Amorphous Titania Gel by Hot Water Aging and Induction of In Vitro Apatite Formation by Crystallized Titania”, Surface & Coatings Technology, in press

    Google Scholar 

  34. J.M. Wu, F. Zhao, Y. Li, S. Zhang, M. Wang, A. Osaka, “Influence of Film Thickness on In Vitro Bioactivity of Thin Anatase Films Produced through Direct Deposition from an Aqueous Titanium Tetrafluoride Solution”, Surface and Coatings Technology, in press

    Google Scholar 

  35. J. Weng, M. Wang, J. Chen, “Plasma Sprayed Calcium Phosphate Particles with High Bioactivity and their Use in Bioactive Scaffolds”, Biomaterials, 23 (2002), 2623–2629

    Article  CAS  PubMed  Google Scholar 

  36. N. Sultana, M. Wang, “Fabrication and Characterisation of Polymer and Composite Scaffolds Based on Polyhydroxybutyrate and Polyhydroxybutyrate-co-hydroxyvalerate”, Key Engineering Materials, in press

    Google Scholar 

  37. W.Y. Zhou, S.H. Lee, W.L. Cheung, M. Wang, W.Y. Ip, “Selective Laser Sintering of Porous Scaffolds from Poly(L-Lactide) Microspheres and its Nanocomposite with Carbonated Hydroxyapatite Nanospheres”, 20 th European Conference on Biomaterials (ESB2006), Nantes, France, 2006, accepted

    Google Scholar 

  38. Y. Chen, A.F.T. Mak, J. Li, M. Wang, A.W.T. Shum, “Formation of Apatite on Poly(α-hydroxy acid) in an Accelerated Biomimetic Process”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 73B (2005), 68–76

    Article  CAS  Google Scholar 

  39. Y. Chen, A.F.T. Mak, M. Wang, J. Li, “Composite Coating of Bone-like Apatite Particles and Collagen Fibers on Poly L-lactic Acid Formed through an Accelerated Biomimetic Coprecipitation Process”, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 77B (2006), 315–322

    Article  CAS  Google Scholar 

  40. Y. Chen, A.F.T. Mak, M. Wang, J. Li, M.S. Wong, “PLLA Scaffolds with Biomimetic Apatite Coating and Biomimetic Apatite/Collagen Composite Coating to Enhance Osteoblast-like Cells Attachment and Activity”, Surface and Coatings Technology, 201 (2006), 575–580

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, M. (2007). Surface Modification of Biomaterials and Tissue Engineering Scaffolds for Enhanced Osteoconductivity. In: Ibrahim, F., Osman, N.A.A., Usman, J., Kadri, N.A. (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. IFMBE Proceedings, vol 15. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68017-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68017-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68016-1

  • Online ISBN: 978-3-540-68017-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics