Skip to main content

Solitons of the Complex Ginzburg—Landau Equation

  • Chapter

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 82))

Summary

This chapter deals with the cubic-quintic complex Ginzburg-Landau equation as a model for describing localised solutions in various optical systems with gain and loss. Qualitative differences of solitons in dissipative systems from those in Hamiltonian ones are revealed. Various examples of solitons and their bound states are considered.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V.E. Zakharov, A.B. Shabat, Exact theory of two dimensional self focusing and one dimensional self modulation of nonlinear nonlinear media, Sov. Phys. JETP, 34, 62–69 (1971).

    MathSciNet  ADS  Google Scholar 

  2. C. Normand, Y. Pomeau, Convective instability: a physicist’s approach, Rev. Mod. Phys. 49, 581–623 (1977).

    Article  MathSciNet  ADS  Google Scholar 

  3. P. Kolodner, Collisions between pulses of travelling-wave convection, Phys. Rev. A, 44, 6466–6479 (1991).

    Article  Google Scholar 

  4. R. Graham, Fluctuations, Instabilities and Phase Transitions, ed. by T. Riste ( Springer, Berlin, Heidelberg 1975 ), pp. 215–279.

    Google Scholar 

  5. H. Haken, Synergetics (Springer, Berlin, Heidelberg 1983 ).

    Google Scholar 

  6. C.O. Weiss, Spatio-temporal structures. Part II. Vortices and defects in lasers, Phys. Rep., 219, 311–338 (1992).

    Article  ADS  Google Scholar 

  7. K. Staliunas, Laser Ginzburg-Landau equation and laser hydrodynamics. Phys. Rev. A, 48, 1573–1581 (1993).

    Article  ADS  Google Scholar 

  8. P.K. Jakobsen, J.V. Moloney, A.C. Newell, R. Indik, Space–time dynamics of wide-gain-section lasers, Phys. Rev. A, 45, 8129–8147 (1992).

    Article  Google Scholar 

  9. G.K. Harkness, W.J. Firth, J.B. Geddes, J.V. Moloney, E.M. Wright, Boundary effects in large-aspect-ratio lasers, Phys. Rev. A, 50, No 5, 4310–4322 (1994).

    ADS  Google Scholar 

  10. P.-S. Jian, W.E. Torruellas, M. Haelterman, S. Trillo, U. Peschel, F. Lederer, Solitons of singly resonant optical parametric oscillators, Opt. Lett., 24, 400–402 (1999).

    Article  ADS  Google Scholar 

  11. A.M. Dunlop, E.M. Wright, W.J. Firth, Spatial soliton laser, Opt. Commun., 147, 393–401 (1998).

    Article  ADS  Google Scholar 

  12. V.B. Taranenko, K. Staliunas, C.O. Weiss, Spatial soliton laser: localized structures in a laser with a saturable absorber in a self-imaging resonator, Phys. Rev. A, 56, 1582–1591 (1997).

    Article  Google Scholar 

  13. W.J. Firth, A.J. Scroggie, Optical bullet holes: robust controllable localized states of a nonlinear cavity, Phys. Rev. Lett., 76, 1623–1626 (1996).

    Article  ADS  Google Scholar 

  14. N.A. Kaliteevstii, N.N. Rozanov, S.V. Fedorov, Formation of laser bullets, Opt. Spectrosc., 85, 533–534 (1998).

    Google Scholar 

  15. D. Michaelis, U. Peschel, F. Lederer, Oscillating dark cavity solitons, Opt. Lett., 23, 1814–1816 (1998).

    Article  ADS  Google Scholar 

  16. C.S. Ng, A. Bhattacharjee, Ginzburg-Landau model and single-mode operation of a free-electron laser oscillator, Phys. Rev. Lett., 82, 2665–2668 (1999).

    Article  ADS  Google Scholar 

  17. A. Hasegawa, Y. Kodarna Solitons in Optical Communications (Oxford University Press, New York, 1995 ).

    Google Scholar 

  18. G. Khitrova, H.M. Gibbs, Y. Kawamura, I. Iwamura, T. Ikegami, J.E. Sipe, L. Ming, Spatial solitons in a self-focusing gain medium, Phys. Rev. Lett., 70, 920–923 (1993).

    Article  ADS  Google Scholar 

  19. C. Paré, L. Gagnon, P.-A. Bélanger, Spatial solitary wave in a weakly saturated amplifying/absorbing medium. Opt. Commun., 74. 228–232 (1989).

    Article  ADS  Google Scholar 

  20. A.W. Snyder, D.J. Mitchell, L. Poladian, F. Ladouceur, Self-induced optical fibers: spatial solitary waves. Opt. Lett., 16, 21–23 (1991).

    Article  ADS  Google Scholar 

  21. G.-L. Oppo, G. D’Alessandro, W.J. Firth, Spatiotetnporal instabilities of lasers in models reduced via center manifold techniques, Phys. Rev. A 44, 4712–4720 (1991).

    Article  ADS  Google Scholar 

  22. P. Coullet, L. Gil, F. Rocca, Optical vortices, Opt. communications, 73, 403–408 (1989).

    Article  ADS  Google Scholar 

  23. H.A. Haus, J.G. Fujimoto, E.P. Ippen, Structures for additive pulse mode locking, J. Opt. Soc. Am. B, 8, 2068–2076 (1991).

    Article  ADS  Google Scholar 

  24. N.N. Rozanov, Optical Bistability and Hysteresis in Distributed Nonlinear Systems ( Physical and Mathematical Literature Publishing Company, Moscow, 1997 ).

    Google Scholar 

  25. F.X. Kärtner, U. Keller, Stabilization of soliton-like pulses with a slow saturable absorber, Opt. Lett. 20, 16–18 (1995).

    Article  ADS  Google Scholar 

  26. H. Haus, Theory of mode locking with a fast saturable absorber, J. Appl. Phys., 46, 3049 (1975).

    Article  ADS  Google Scholar 

  27. N. Bekki, K. Nozaki, Formations of spatial patterns and holes in the generalized Ginzburg-Landau equation, Phys. Lett., 110A, 133 (1985).

    Article  Google Scholar 

  28. W. Van Saarloos, P.C. Hohenberg, Fronts, pulses, sources and sinks in generalized complex Ginzburg-Landau equations, Physica D 56, 303–367 (1992).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. N.N. Akhmediev, V.V. Afanasjev, Novel arbitrary-amplitude soliton solutions of the cubic-quintic complex Ginzburg-Landau equation, Phys. Rev. Lett., 75, 2320–2323 (1995).

    Article  ADS  Google Scholar 

  30. V.S. Grigoryan, T.C. Muradyan, Evolution of light pulses into autosolitons in nonlinear amplifying media. J. Opt. Soc. Am. B 8, 1757–1765 (1991).

    Article  ADS  Google Scholar 

  31. N.N. Akhmediev, M.J. Lederer, B. Luther-Davies, Exact localized solution for nonconservative systems with delayed nonlinear response, Phys. Rev. E, 57, 3664–3667 (1998).

    Google Scholar 

  32. S. Longhi, G. Steinmeyer, W.S. Wong, Variational approach to pulse propagation in parametrically amplified optical systems, J. Opt. Soc. Am. B, 14, 2167–2173 (1997).

    Article  ADS  Google Scholar 

  33. N.R. Pereira, Soliton in the damped nonlinear Schrödinger equation, Phys. Fluids, 20, 1735–1743 (1977).

    Article  ADS  MATH  Google Scholar 

  34. N.R. Pereira, L. Stenflo, Nonlinear Schrödinger equation including growth and damping, Phys. Fluids, 20, 1733–1734 (1977).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. D.R. Nicholson, M.V. Goldman, Damped nonlinear Schrödinger equation, Phys. Fluids, 19, 1621–1625 (1976).

    Article  MathSciNet  ADS  Google Scholar 

  36. N.R. Pereira, F.Y.F. Chu, Damped double solitons in the nonlinear Schrödinger equation, Phys. Fluids, 22, 874–881 (1979).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. J. Weiland, Y.H. Ichikawa, H. Wilhelmsson, A perturbation expansion for the NLS with application to the influence of nonlinear Landau damping, Phys. Scr., 17, 517–522 (1978).

    Article  ADS  Google Scholar 

  38. P.-A. Bélanger, L. Gagnon, C. Paré, Solitary pulses in an amplified nonlinear dispersive medium, Opt. Lett., 14, 943–945 (1989).

    Article  ADS  Google Scholar 

  39. L.M. Hocking, K. Stewartson, On the nonlinear response of a marginally unstable plane parallel flow to a two-dimensional disturbance, Proc. R. Soc. London A, 326, 289–313 (1972).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. K. Nozaki, N.J. Bekki, Exact solutions of the generalized Ginzburg-Landau equation, J. Phys. Soc. Jpn., 53, 1581–1582 (1984).

    Article  MathSciNet  ADS  Google Scholar 

  41. A.V. Porubov, M.G. Velarde, Exact periodic solutions of the complex Ginzburg -Landau equation. J. Math. Phys., 40, 884–896 (1999).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  42. R. Conte, M. Musette, Linearity inside nonlinearity: exact solutions to the complex Ginzburg-Landau equation, Physica D 69, 1–17 (1993).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  43. B.A. Malomed, Evolution of nonsoliton and “quasi-classical” wavetrains in nonlinear Schrödinger and KdV equations with dissipative perturbations, Physica D, 29, 155–172 (1987).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  44. O. Thual, S. Fauve, Localized structures generated by subcritical instabilities, J. Phys. (France), 49, 1829–1833 (1988).

    Article  Google Scholar 

  45. H.R. Brand, R.J. Deissler, Interaction of localized solutions for subcritical bifurcations, Phys. Rev. Lett. 63, 2801–2804 (1989).

    Article  ADS  Google Scholar 

  46. V. Hakim, P. Jakobsen, Y. Porneau. Fronts vs. solitary waves in nonequilibrium systems, Europhys. Lett., 11, 19–24 (1990).

    Article  ADS  Google Scholar 

  47. W. Vari Saarloos, P.C. Hohenberg, Pulses and fronts in the complex Ginzburg Landau equation near a subcritical bifurcation, Phys. Rev. Lett., 64, 749–752 (1990).

    Google Scholar 

  48. P. Marcq, H. Chaté, R. Conte, Exact solutions of the one-dimensional quintic complex Ginzburg-Landau equation, Physica D, 73, 305–317 (1994).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. N. Akhmediev, A. Ankiewicz, Solitons, nonlinear pulses and beams (Chapman amp; Hall, London, 1997 ).

    Google Scholar 

  50. S. Fauve, O. Thual, Solitary waves generated by subcritical instabilities in dissipative systems, Phys. Rev. Lett., 64, 282–285 (1990).

    Article  ADS  Google Scholar 

  51. Y. Kodama, M. Romagnoli, S. Wabnitz, Soliton stability and interactions in fibre lasers, Electron. Lett., 28, 1981–1982 (1992).

    Article  Google Scholar 

  52. V.V. Afanasjev, Solitan singularity in the system with nonlinear gain. Opt. Lett., 20, 704–706 (1995).

    Article  ADS  Google Scholar 

  53. A. Ankiewicz, Simplified description of soliton perturbation and interaction using averaged complex potentials, J. Nonlinear Opt. Phys. Mater., 4, 857–870 (1995).

    Google Scholar 

  54. J.D. Moores, On the Ginsburg Landau laser mode-locking model with fifth-order saturable absorber term, Optics Commun., 96, 65–70 (1993).

    Article  ADS  Google Scholar 

  55. N.N. Akhmediev, V.V. Afanasjev, J.M. Soto-Crespo, Singularities, special soli-ton solutions of the cubic-quintic complex Ginzburg-Landau equation. Phys. Rev. E, 53. 1190–1198 (1996).

    Article  ADS  Google Scholar 

  56. N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Stable soliton pairs in optical transmission lines and fiber lasers, J. Opt. Soc. Am. B, 15, 515–523 (1998).

    Article  MathSciNet  ADS  Google Scholar 

  57. P. Kolodner, D. Bensimon, C.M. Surko, Travelling-wave convection in an annulus, Phys. Rev. Lett., 60, 1723–1726 (1988).

    Article  ADS  Google Scholar 

  58. D.J. Kaup, B.A. Malomed, The variational principle for nonlinear waves in dissipative systems, Physica D, 87, 155–159 (1995).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  59. J.M. Soto-Crespo, L. Pesquera, Analytical approximation of the soliton solutions of the quintic complex Ginzburg- Landau equation, Phys. Rev. E, 56, 7288–7293 (1997).

    Google Scholar 

  60. T. Kapitula, B. Sandstede, Instability mechanism for bright solitary-wave solutions to the cubic-quintic Ginzburg–Landau equation, J. Opt. Soc. Am. B 15, 2757–2762 (1998); Stability of bright solitary-wave solutions to perturbed nonlinear Schrödinger equations, Physica D 124, 58–103 (1998).

    MathSciNet  ADS  MATH  Google Scholar 

  61. T. Kapitula, B. Sandstede, Stability criterion for bright solitary waves of the perturbed cubic-quintic Schrödinger equation, Physica D 116, 95–120 (1998).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  62. J.M. Soto-Crespo, N.N. Akhmediev, V.V. Afanasjev, Stability of the pulselike solutions of the quintic complex Ginzburg-Landau equation, J. Opt. Soc. Am. B, 13, 1439 (1996).

    Article  ADS  Google Scholar 

  63. V.V. Afanasjev, N.N. Akhmediev, J.M. Soto-Crespo, Three forms of localized solutions of the quintic complex Ginsburg-Landau equation. Phys. Rev. E. 53, 1931–1939 (1996).

    Article  ADS  Google Scholar 

  64. N.N. Rozanov, S.V. Fedorov, G.V. Khodova, A.A. Zinchik, The regime of the leading center for transversely unidimensional laser autosolitons. Opt. Spectrosc., 83, 370–371 (1997).

    ADS  Google Scholar 

  65. N.N. Akhmediev, J.M. Soto-Crespo, Plethora of soliton-like pulses in passively mode-locked fiber lasers, in Nonlinear Guided Waves and their Applications. Technical digest series, Cambridge, 1996, paper SaD10, pp. 197–199.

    Google Scholar 

  66. V.V. Afanasjev, N.N. Akhmediev, Soliton interaction and bound states in amplified-damped fiber systems, Opt. Lett., 20, 1970–1972 (1995).

    Article  ADS  Google Scholar 

  67. N.N. Rozanov, S.V. Fedorov, G.V. Khodova, Pulsating and bound transversely unidimensional laser autosolitons, Optics and Spectroscopy, 81, 896–898 (1996).

    ADS  Google Scholar 

  68. N.N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Multisoliton solutions of the complex Ginzburg— Landau equation, Phys. Rev. Lett., 79, 4047–4051 (1997).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  69. W. Schöpf, L. Kramer, Small-amplitude periodic and chaotic solutions of the CGLE, Phys. Rev. Lett., 66, 2316–2319 (1991).

    Article  ADS  Google Scholar 

  70. N.N. Akhmediev, A. Ankiewicz, Generation of a train of solitons with arbitrary phase difference between neighboring solitons, Opt. Lett., 19, 545–547 (1994).

    Article  ADS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Akhmediev, N., Ankiewicz, A. (2001). Solitons of the Complex Ginzburg—Landau Equation. In: Trillo, S., Torruellas, W. (eds) Spatial Solitons. Springer Series in Optical Sciences, vol 82. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44582-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44582-1_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07498-1

  • Online ISBN: 978-3-540-44582-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics