Skip to main content

Nucleocytoplasmic RNA Transport in Retroviral Replication

  • Chapter
Cell Polarity and Subcellular RNA Localization

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 34))

Abstract

Cellular gene expression is a highly ordered, stepwise process. Genetic information is transcribed in the cell nucleus into a pre-mRNA. Subsequently, this primary transcript is extensively modified on a post-transcriptional level. Intronic, non coding sequences are removed by splicing, a cap structure is added to the 5’end, and the 3’end is modified by cleavage and polyadenylation. A hallmark of all cellular gene expression is retention of the transcript in the nucleus during the entire process of modification. Only the completely processed mature RNA molecule is exported into the cytoplasm, where translation occurs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Askjaer P, Jensen TH, Nilsson J, Englmeier L, Kjems J (1998) The specificity of the CRM1-Rev nuclear export signal interaction is mediated by RanGTP. J Biol Chem 273(50):33414–33422

    Article  PubMed  CAS  Google Scholar 

  • Bear J et al (1999) Identification of novel import and export signals of human TAP, the protein that binds to the constitutive transport element of the type D retrovirus mRNAs. Mol Cell Biol 19(9):6306–6317

    PubMed  CAS  Google Scholar 

  • Bevec D et al (1996) Inhibition of HIV-1 replication in lymphocytes by mutants of the Rev cofactor eIF-5 A. Science 271(5257):1858–1860

    CAS  Google Scholar 

  • Black AC et al (1991) Regulation of HTLV-II gene expression by Rex involves positive and negative cis-acting elements in the 5’ long terminal repeat. Virology 181(2):433–444

    Article  PubMed  CAS  Google Scholar 

  • Bogerd H, Greene WC (1993) Dominant negative mutants of human T-cell leukemia virus type I Rex and human immunodeficiency virus type 1 Rev fail to multimerize in vivo. J Virol 67(5):2496–2502

    CAS  Google Scholar 

  • Bogerd HP, Huckaby GL, Ahmed YF, Hanly SM, Greene WC (1991) The type I human T-cell leukemia virus (HTLV-I) Rex trans-activator binds directly to the HTLV-I Rex and the type 1 human immunodeficiency virus Rev RNA response elements. Proc Natl Acad Sci USA 88(13):5704–5708

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Fridell RA, Madore S, Cullen BR (1995) Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82(3):485–494

    Article  PubMed  CAS  Google Scholar 

  • Bogerd HP, Echarri A, Ross TM, Cullen BR (1998) Inhibition of human immunodeficiency virus Rev and human T-cell leukemia virus Rex function, but not Mason-Pfizer monkey virus constitutive transport element activity, by a mutant human nucleoporin targeted to Crml. J Virol 72 (11):8627–8635

    PubMed  CAS  Google Scholar 

  • Bohnlein E, Berger J, Hauber J (1991) Functional mapping of the human immunodeficiency virus type 1 Rev RNA binding domain: new insights into the domain structure of Rev and Rex. J Virol 65(12):7051–7055

    PubMed  CAS  Google Scholar 

  • Braun IC, Rohrbach E, Schmitt C, Izaurralde E (1999) TAP binds to the constitutive transport element (CTE) through a novel RNA-binding motif that is sufficient to promote CTEdependent RNA export from the nucleus. EMBO J 18(7):1953–1965

    Article  PubMed  CAS  Google Scholar 

  • Bray M et al (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev- independent. Proc Natl Acad Sci USA 91(4):1256–1260

    Article  PubMed  CAS  Google Scholar 

  • Brighty DW, Rosenberg M (1994) A cis-acting repressive sequence that overlaps the Revresponsive element of human immunodeficiency virus type 1 regulates nuclear retention of env mRNAs independently of known splice signals. Proc Natl Acad Sci USA 91(18):8314–8318

    Article  PubMed  CAS  Google Scholar 

  • Chang DD, Sharp PA (1989) Regulation by HIV Rev depends upon recognition of splice sites. Cell 59(5):789–795

    Article  PubMed  CAS  Google Scholar 

  • Coffin JM, Hughes SH, Varmus HE (eds) (1997) Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Cullen BR (1998) Retroviruses as model systems for the study of nuclear RNA export pathways. Virology 249(2):203–210

    Article  PubMed  CAS  Google Scholar 

  • Dingwall C, Laskey RA (1991) Nuclear targeting sequences — a consensus? (See comments.) Trends Biochem Sci 16(12):478–481

    Article  PubMed  CAS  Google Scholar 

  • Elfgang C et al (1999) Evidence for specific nucleocytoplasmic transport pathways used by leucine-rich nuclear export signals. Proc Natl Acad Sci USA 96(11):6229–6234

    Article  PubMed  CAS  Google Scholar 

  • Ernst RK, Bray M, Rekosh D, Hammarskjold ML (1997a) Secondary structure and mutational analysis of the Mason-Pfizer monkey virus RNA constitutive transport element. RNA 3(2):210–222

    PubMed  CAS  Google Scholar 

  • Ernst RK, Bray M, Rekosh D, Hammarskjold ML (1997b) A structured retroviral RNA element that mediates nucleocytoplasmic export of intron-containing RNA. Mol Cell Biol 17(1): 135–144

    PubMed  CAS  Google Scholar 

  • Feinberg MB, Jarrett RF, Aldovini A, Gallo RC, Wong-Staal F (1986) HTLV-III expression and production involve complex regulation at the levels of splicing and translation of viral RNA. Cell 46(6):807–817

    Article  PubMed  CAS  Google Scholar 

  • Felber BK, Hadzopoulou-Cladaras M, Cladaras C, Copeland T, Pavlakis GN (1989) Rev protein of human immunodeficiency virus type 1 affects the stability and transport of the viral mRNA. Proc Natl Acad Sci USA 86(5):1495–1499

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Huber J, Boelens WC, Mattaj IW, Luhrmann R (1995) The HIV-1 Rev activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs. Cell 82(3):475–483

    Article  PubMed  CAS  Google Scholar 

  • Fischer U et al (1999) Rev-mediated nuclear export of RNA is dominant over nuclear retention and is coupled to the Ran-GTPase cycle. Nucleic Acids Res 27(21):4128–4134

    Article  PubMed  CAS  Google Scholar 

  • Fornerod M, Ohno M, Yoshida M, Mattaj IW (1997a) CRM1 is an export receptor for leucine-rich nuclear export signals (see comments). Cell 90(6):1051–1060

    Article  PubMed  CAS  Google Scholar 

  • Fornerod M et al (1997b) The human homologue of yeast CRM1 is in a dynamic subcomplex with CAN/Nup214 and a novel nuclear pore component Nup88. EMBO J 16(4):807816

    Google Scholar 

  • Fritz CC, Zapp ML, Green MR (1995) A human nucleoporin-like protein that specifically interacts with HIV Rev. Nature 376(6540):530–533

    CAS  Google Scholar 

  • Fukuda M et al (1997) CRM1 is responsible for intracellular transport mediated by the nuclear export signal. Nature 390(6657):308–311

    Article  PubMed  CAS  Google Scholar 

  • Gorlich D, Kutay U (1999) Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660

    Article  PubMed  CAS  Google Scholar 

  • Grassmann R et al (1991) In vitro binding of human T-cell leukemia virus rex proteins to the rex-response element of viral transcripts. J Virol 65(7):3721–3727

    PubMed  CAS  Google Scholar 

  • Gruter P et al. (1998) TAP, the human homologue of Mex67p, mediates CTE-dependent RNA export from the nucleus. Mol Cell 1(5):649–659

    Article  PubMed  CAS  Google Scholar 

  • Haas J, Park EC, Seed B (1996) Codon usage limitation in the expression of HIV-1 envelope glycoprotein. Curr Biol 6(3):315–324

    Article  PubMed  CAS  Google Scholar 

  • Hakata Y, Umemoto T, Matsushita S, Shida H (1998) Involvement of human CRM1 (exportin 1) in the export and multimerization of the Rex protein of human T-cell leukemia virus type 1. J Virol 72(8):6602–6607

    PubMed  CAS  Google Scholar 

  • Hentze MW, Kulozik AE (1999) A perfect message: RNA surveillance and nonsense-mediated decay. Cell 96(3):307–310

    Article  PubMed  CAS  Google Scholar 

  • Hibbert CS, Gontarek RR, Beemon KL (1999) The role of overlapping U1 and Ul 1 5’ splice site sequences in a negative regulator of splicing. RNA 5(3):333–343

    Article  PubMed  CAS  Google Scholar 

  • Hidaka M, Inoue J, Yoshida M, Seiki M (1988) Post-transcriptional regulator (rex) of HTLV-1 initiates expression of viral structural proteins but suppresses expression of regulatory proteins. EMBO J 7(2):519–523

    PubMed  CAS  Google Scholar 

  • Hope TJ, Bond BL, McDonald D, Klein NP, Parslow TG (1991) Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type I Rex are functionally interchangeable and share an essential peptide motif. J Virol 65(11):6001–6007

    PubMed  CAS  Google Scholar 

  • Huang Y, Carmichael GG (1997) The mouse histone H2a gene contains a small element that facilitates cytoplasmic accumulation of intronless gene transcripts and of unspliced HIV-1-related mRNAs. Proc Natl Acad Sci USA 94(19):10104–10109

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Wimler KM, Carmichael GG (1999) Intronless mRNA transport elements may affect multiple steps of pre-mRNA processing. EMBO J 18(6):1642–1652

    Article  PubMed  CAS  Google Scholar 

  • Inoue J, Yoshida M, Seiki M (1987) Transcriptional (p40x) and post-transcriptional (p27x-III) regulators are required for the expression and replication of human T-cell leukemia virus type I genes. Proc Natl Acad Sci USA 84(11):3653–3657

    Article  PubMed  CAS  Google Scholar 

  • Izaurralde E, Adam S (1998) Transport of macromolecules between the nucleus and the cytoplasm. RNA 4(4):351–364

    PubMed  CAS  Google Scholar 

  • Izaurralde E, Mattaj IW (1995) RNA export. Cell 81(2):153–159

    CAS  Google Scholar 

  • Junker U et al (1996) Intracellular expression of cellular eIF-5 A mutants inhibits HIV-1 replication in human T cells: a feasibility study. Hum Gene Ther 7(15):1861–1869

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Cullen BR (1999) The human Tap protein is a nuclear mRNA export factor that contains novel RNA-binding and nucleocytoplasmic transport sequences. Genes Dev 13(9):1126–1139

    Article  PubMed  CAS  Google Scholar 

  • Kang Y, Bogerd HP, Yang J, Cullen BR (1999) Analysis of the RNA binding specificity of the human tap protein, a constitutive transport element-specific nuclear RNA export factor. Virology 262(1):200–209

    Article  PubMed  CAS  Google Scholar 

  • Katahira J et al. (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 18(9):2593–2609

    Article  PubMed  CAS  Google Scholar 

  • Legrain P, Rosbash M (1989) Some cis- and trans-acting mutants for splicing target pre-mRNA to the cytoplasm. Cell 57(4):573–583

    Article  PubMed  CAS  Google Scholar 

  • Magin C, Lower R, Lower J (1999) cOrf and RcRe, the Rev/Rex and Rre/RxRe homologues of the human endogenous retrovirus family Htdv/Herv-K. J Virol 73(11):9496–9507

    PubMed  CAS  Google Scholar 

  • Maldarelli F, Martin MA, Strebel K (1991) Identification of post-transcriptionally active inhibitory sequences in human immunodeficiency virus type 1 RNA: novel level of gene regulation. J Virol 65(11):5732–5743

    PubMed  CAS  Google Scholar 

  • Malim MH, Cullen BR (1991) HIV-1 structural gene expression requires the binding of multiple Rev monomers to the viral RRE: implications for HIV-1 latency. Cell 65(2):241–248

    Article  PubMed  CAS  Google Scholar 

  • Malim MH, Bohnlein S, Hauber J, Cullen BR (1989a) Functional dissection of the HIV-1 Rev transactivator-derivation of a trans-dominant repressor of Rev function. Cell 58(1):205–214

    CAS  Google Scholar 

  • Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989b) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338(6212):254–257

    Article  PubMed  CAS  Google Scholar 

  • Mattaj IW, Englmeier L (1998) Nucleocytoplasmic transport: the soluble phase. Annu Rev Biochem 67:265–306

    Article  PubMed  CAS  Google Scholar 

  • McNally LM, McNally MT (1998) An RNA splicing enhancer-like sequence is a component of a splicing inhibitor element from Rous sarcoma virus. Mol Cell Biol 18(6):3103–3111

    PubMed  CAS  Google Scholar 

  • McNally MT, Gontarek RR, Beemon K (1991) Characterization of Rous sarcoma virus intronic sequences that negatively regulate splicing. Virology 185(1):99–108

    Article  PubMed  CAS  Google Scholar 

  • Meyer BE, Malim MH (1994) The HIV-1 Rev trans-activator shuttles between the nucleus and the cytoplasm. Genes Dev 8(13):1538–1547

    Article  PubMed  CAS  Google Scholar 

  • Nasioulas G et al (1994) Elements distinct from human immunodeficiency virus type 1 splice sites are responsible for the Rev dependence of env mRNA. J Virol 68(5):2986–2993

    PubMed  CAS  Google Scholar 

  • Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin-beta family member Crmlp bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7(10):767–775

    Article  PubMed  CAS  Google Scholar 

  • Nishi K et al. (1994) Leptomycin B targets a regulatory cascade of crml, a fission yeast nuclear protein, involved in control of higher order chromosome structure and gene expression. J Biol Chem 269(9):6320–6324

    PubMed  CAS  Google Scholar 

  • Ogert RA, Beemon KL (1998) Mutational analysis of the Rous sarcoma virus DR posttranscriptional control element. J Virol 72(4):3407–3411

    PubMed  CAS  Google Scholar 

  • Ogert RA, Lee LH, Beemon KL (1996) Avian retroviral RNA element promotes unspliced RNA accumulation in the cytoplasm. J Virol 70(6):3834–3843

    PubMed  CAS  Google Scholar 

  • Otero GC, Harris ME, Donello JE, Hope TJ (1998) Leptomycin B inhibits equine infectious anemia virus Rev and feline immunodeficiency virus rev function but not the function of the hepatitis B virus posttranscriptional regulatory element. J Virol 72(9):7593–7597

    PubMed  CAS  Google Scholar 

  • Pasquinelli AE et al (1997) The constitutive transport element (CTE) of Mason-Pfizer monkey virus (MPMV) accesses a cellular mRNA export pathway. EMBO J 16(24):7500–7510

    Article  PubMed  CAS  Google Scholar 

  • Patience C et al (1996) Human endogenous retrovirus expression and reverse transcriptase activity in the T47D mammary carcinoma cell line. J Virol 70(4):2654–2657

    PubMed  CAS  Google Scholar 

  • Perkins A, Cochrane AW, Ruben SM, Rosen CA (1989) Structural and functional characterization of the human immunodeficiency virus rev protein. J Acquir Immune Defic Syndr 2(3):256–263

    PubMed  CAS  Google Scholar 

  • Pollard VW, Malim MH (1998) The HIV-1 Rev protein. Annu Rev Microbiol 52:491–532

    Article  PubMed  CAS  Google Scholar 

  • Purcell DF, Martin MA (1993) Alternative splicing of human immunodeficiency virus type 1 mRNA modulates viral protein expression, replication, and infectivity. J Virol 67(11): 6365–6378

    PubMed  CAS  Google Scholar 

  • Rimsky L et al (1988) Functional replacement of the HIV-1 rev protein by the HTLV-1 rex protein. Nature 335(6192):738–740

    Article  PubMed  CAS  Google Scholar 

  • Rosorius O et al (1999) Nuclear pore localization and nucleocytoplasmic transport of eIF-5 A: evidence for direct interaction with the export receptor CRM1. J Cell Sci 112(Pt):2369–2380

    PubMed  CAS  Google Scholar 

  • Ruhl M et al (1993) Eukaryotic initiation factor 5 A is a cellular target of the human immunodeficiency virus type 1 Rev activation domain mediating trans-activation. J Cell Biol 123(6/1):1309–1320

    Article  PubMed  CAS  Google Scholar 

  • Saavedra C, Felber B, Izaurralde E (1997) The simian retrovirus-1 constitutive transport element, unlike the HIV-1 RRE, uses factors required for cellular mRNA export. Curr Biol 7(9):619628

    Google Scholar 

  • Santos-Rosa H et al (1998) Nuclear mRNA export requires complex formation between Mex67p and Mtr2p at the nuclear pores. Mol Cell Biol 18(11):6826–6838

    PubMed  CAS  Google Scholar 

  • Schambach A, Wodrich H, Hildinger M, Bohne J, Krausslich H-G, Baum C (2000) Contextdependence of different modules for post-transcriptional enhancement of gene expression from retroviral vectors. Mol Therapy (in press)

    Google Scholar 

  • Schneider R, Campbell M, Nasioulas G, Felber BK, Pavlakis GN (1997) Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation. J Virol 71(7):4892–4903

    PubMed  CAS  Google Scholar 

  • Schwartz S, Felber BK, Benko DM, Fenyo EM, Pavlakis GN (1990. Cloning and functional analysis of multiply spliced mRNA species of human immunodeficiency virus type 1. J Virol 64(6):2519–2529

    PubMed  CAS  Google Scholar 

  • Schwartz S et al. (1992a) Mutational inactivation of an inhibitory sequence in human immunodeficiency virus type 1 results in Rev-independent gag expression. J Virol 66(12):71767182

    Google Scholar 

  • Schwartz S, Felber BK, Pavlakis GN (1992b) Distinct RNA sequences in the gag region of human immunodeficiency virus type 1 decrease RNA stability and inhibit expression in the absence of Rev protein. J Virol 66(1):150–159

    CAS  Google Scholar 

  • Segref A et al (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly(A)+ RNA and nuclear pores. EMBO J 16(11):3256–3271

    Article  PubMed  CAS  Google Scholar 

  • Seiki M, Inoue J, Hidaka M, Yoshida M (1988) Two cis-acting elements responsible for posttranscriptional trans-regulation of gene expression of human T-cell leukemia virus type I. Proc Natl Acad Sci USA 85(19):7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Simpson SB, Zhang L, Craven RC, Stoltzfus CM (1997) Rous sarcoma virus direct repeat cis elements exert effects at several points in the virus life cycle. J Virol 71(12):9150–9156

    PubMed  CAS  Google Scholar 

  • Sodroski J et al (1986) A second post-transcriptional trans-activator gene required for HTLV- III replication. Nature 321(6068):412–417

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Neville M, Rosbash M (1995) Identification of a novel nuclear pore-associated protein as a functional target of the HIV-1 Rev protein in yeast. Cell 82(3):495–506

    Article  PubMed  CAS  Google Scholar 

  • Stutz F, Rosbash M (1998) Nuclear RNA export. Genes Dev 12(21):3303–3319

    Article  PubMed  CAS  Google Scholar 

  • Tabernero C, Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK (1996) The pos-transcriptional control element of the simian retrovirus type 1 forms an extensive RNA secondary structure necessary for its function. J Virol 70(9):5998–6011

    PubMed  CAS  Google Scholar 

  • Tabernero C et al (1997) Identification of an RNA sequence within an intracisternal-A particle element able to replace Rev-mediated post-transcriptional regulation of human immunodeficiency virus type 1. J Virol 71(1):95–101

    PubMed  CAS  Google Scholar 

  • Tang H, Gaietta GM, Fischer WH, Ellisman MH, Wong-Staal F (1997) A cellular cofactor for the constitutive transport element of type D retrovirus. Science 276(5317):1412–1415

    Article  PubMed  CAS  Google Scholar 

  • Tiley LS et al (1990) Visna virus encodes a post-transcriptional regulator of viral structural gene expression (published erratum appears in Proc Natl Acad Sci USA 1990, 87(23):9508).

    CAS  Google Scholar 

  • Tiley LS et al (1990) Proc Natl Acad Sci USA 87(19):7497–501

    Article  PubMed  CAS  Google Scholar 

  • Tiley LS, Malim MH, Tewary HK, Stockley PG, Cullen BR (1992) Identification of a high-affinity RNA-binding site for the human immunodeficiency virus type 1 Rev protein (published erratum appears in Proc Natl Acad Sci USA 1992, 89(5):1997).

    Google Scholar 

  • Tiley LS, Malim MH, Tewary HK, Stockley PG, Cullen BR (1992) Proc Natl Acad Sci USA 89(2):758–762

    Article  PubMed  CAS  Google Scholar 

  • Truant R, Kang Y, Cullen BR (1999) The human tap nuclear RNA export factor contains a novel transportin-dependent nuclear localization signal that lacks nuclear export signal function. J Biol Chem 274(45):32167–32171

    Article  PubMed  CAS  Google Scholar 

  • Wen W, Meinkoth JL, Tsien RY, Taylor SS (1995) Identification of a signal for rapid export of proteins from the nucleus. Cell 82(3):463–473

    Article  PubMed  CAS  Google Scholar 

  • Wodrich H, Schambach A, Krausslich HG (2000a) Multiple copies of the Mason-Pfizer monkey virus constitutive RNA transport element lead to enhanced HIV-1 Gag expression in a context-dependent manner. Nucleic Acids Res 28(4):901–910

    Article  PubMed  CAS  Google Scholar 

  • Wodrich H, Gumz E, Bohne J, Welker R, Krausslich H-G (2000b) Identification and characterization of a retroviral RNA-element in the coding region of a murine endogenous retrovirus (IAP) which can functionally replace the Rev/RRE system of HIV-1 (submitted)

    Google Scholar 

  • Wolff B, Sanglier JJ, Wang Y (1997) Leptomycin B is an inhibitor of nuclear export: inhibition of nucleo-cytoplasmic translocation of the human immunodeficiency virus type 1 (HIV-1) Rev protein and Rev-dependent mRNA. Chem Biol 4(2):139–147

    CAS  Google Scholar 

  • Yang J et al (1999) An ancient family of human endogenous retroviruses encodes a functional homolog of the HIV-1 Rev protein. Proc Natl Acad Sci USA 96(23):13404–13408

    Article  CAS  Google Scholar 

  • Yoon DW et al (1997) Tap: a novel cellular protein that interacts with tip of herpes virus saimiri and induces lymphocyte aggregation. Immunity 6(5):571–582

    Article  PubMed  CAS  Google Scholar 

  • Zhang S, Herrmann C, Grosse F (1999) Pre-mRNA and mRNA binding of human nuclear DNA helicase II (RNA helicase A). J Cell Sci 112(7):1055–1064

    PubMed  CAS  Google Scholar 

  • Zolotukhin AS, Valentin A, Pavlakis GN, Felber BK (1994) Continuous propagation of RRE(-) and Rev(-)RRE(-) human immunodeficiency virus type 1 molecular clones containing a cis-acting element of simian retrovirus type 1 in human peripheral blood lymphocytes. J Virol 68(12):7944–7952h

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wodrich, H., Kräusslich, HG. (2001). Nucleocytoplasmic RNA Transport in Retroviral Replication. In: Richter, D. (eds) Cell Polarity and Subcellular RNA Localization. Results and Problems in Cell Differentiation, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40025-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40025-7_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07436-3

  • Online ISBN: 978-3-540-40025-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics