Skip to main content

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 34))

Abstract

Because of the relatively large size of Xenopus oocytes (up to 1.4 mm in diameter by the end of stage VI), their ease of injection and manipulation, and their clearly defined animal-vegetal polarity, this system represents one of the most intensively studied systems for RNA localization. One of the first screens for localized RNAs was performed on Xenopus eggs and oocytes, and identified both animally and vegetally localized RNAs (Rebagliati et al. 1985). Since then, several different techniques have identified a number of additional RNAs, whose functions are quite varied (see King et al. 1999; Mowry and Cote 1999). In addition, trans-acting factors have been described that appear to play important roles in localizing RNAs in oocytes. The role cytoskeletal elements play in localizing various RNAs has also been examined. In short, the Xenopus oocyte system can be considered in many ways a model system for understanding how RNAs are intracellularly localized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Bashirullah A, Halsell SR, Cooperstock RL, Kloc M, Karaiskakis A, Fisher WW, Fu W, Hamilton JK, Etkin LD, Lipshitz HD (1999) Joint action of two RNA degradation pathways controls the timing of maternal transcript elimination at the midblastula transition in Drosophila melanogaster. EMBO J 18:2610–2620

    Article  PubMed  CAS  Google Scholar 

  • Carotenuto R, Vaccaro MC, Capriglione T, Petrucci TC, Campanella C (2000) a-Spectrin has a stage-specific asymmetrical localization during Xenopus oogenesis. Mol Reprod Dev 55: 229–239

    Google Scholar 

  • Chan AP, Kloc M, Etkin LD (1999) fatvg encodes a new localized RNA that uses a 25-nucleotide element (FVLE1) to localize to the vegetal cortex of Xenopus oocytes. Development 126: 4943–4953

    PubMed  CAS  Google Scholar 

  • Chen T, Damaj BB, Herrera C, Lasko P, Richard S (1997) Self-association of the single-KH-domain family members Sam68, GRP33, GLD-1, and Qkl: role of the KH domain. Mol Cell Biol 17:5707–5718

    PubMed  CAS  Google Scholar 

  • Cote CA, Gautreau D, Denegre JM, Kress TL, Terry NA and Mowry KL (1999) A Xenopus protein related to hnRNP I has a role in cytoplasmic RNA localization. Mol Cell 4:431–437

    Article  PubMed  CAS  Google Scholar 

  • Deng W, Lin H (1997) Spectrosomes and fusomes anchor mitotic spindles during asymmetric germ cell divisions and facilitate the formation of a polarized microtubule array for oocyte specification in Drosophila. Dev Biol 189:79–94

    Article  PubMed  CAS  Google Scholar 

  • Deshler JO, Highett MI, Schnapp BJ (1997) Localization of Xenopus Vgl mRNA by Vera protein and the endoplasmic reticulum. Science 276:1128–1131

    Article  PubMed  CAS  Google Scholar 

  • Deshler JO, Highett MI, Abramson T, Schnapp BJ (1998) A highly conserved RNA-binding protein for cytoplasmic mRNA localization in vertebrates. Curr Biol 8:489–496

    Article  PubMed  CAS  Google Scholar 

  • Devic E, Paquereau L, Rizzoti K, Monier A, Knibiehler B, Audigier Y (1996) The mRNA encoding a beta subunit of heterotrimeric GTP-binding proteins is localized to the animal pole of Xenopus laevis oocyte and embryos. Mech Dev 59:141–151

    Article  PubMed  CAS  Google Scholar 

  • Drummond D, McCrae M, Colman A (1985) Stability and movement of mRNAs and their encoded proteins in Xenopus oocytes. J Cell Biol 100:1148–1156

    Article  PubMed  CAS  Google Scholar 

  • Elisha Z, Havin L, Ringel I, Yisraeli JK (1995) Vgl RNA binding protein mediates the association of Vgl RNA with microtubules in Xenopus oocytes. EMBO J 14:5109–5114

    PubMed  CAS  Google Scholar 

  • Forristall C, Pondel M, Chen L, King ML (1995) Patterns of localization and cytoskeletal association of two vegetally localized RNAs, Vgl and Xcat-2. Development 121:201–208

    PubMed  CAS  Google Scholar 

  • Franke WW, Rathke PC, Seib E, Trendelenburg MF, Osborn M, Weber K (1976) Distribution and mode of arrangement of microfilamentous structures and actin in the cortex of the amphibian oocyte. Cytobiologie 14:111–130

    PubMed  CAS  Google Scholar 

  • Gard DL (1991) Organization, nucleation, and acetylation of microtubules in Xenopus laevis oocytes: a study by confocal immunofluorescence microscopy. Dev Biol 143:346–362

    Article  PubMed  CAS  Google Scholar 

  • Gard DL (1994) γ-Tubulin is asymmetrically distributed in the cortex of Xenopus oocytes. Dev Biol 161:131–140

    Article  PubMed  Google Scholar 

  • Gard DL, Affleck D, Error BM (1995) Microtubule organization, acetylation, and nucleation in Xenopus laevis oocytes. II. A developmental transition in microtubule organization during early diplotene. Dev Biol 168:189–201

    Article  PubMed  CAS  Google Scholar 

  • Gard DL, Cha BJ, King E (1997) The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules. Dev Biol 184:95–114

    Article  PubMed  CAS  Google Scholar 

  • Gautreau D, Cote CA, Mowry KL (1997) Two copies of a subelement from the Vgl RNA localization sequence are sufficient to direct vegetal localization in Xenopus oocytes. Development 124:5013–5020

    PubMed  CAS  Google Scholar 

  • Havin L, Git A, Elisha Z, Oberman F, Yaniv K, Schwartz SP, Standart N, Yisraeli JK (1998) RNAbinding protein conserved in both microtubule- and microfilament-based RNA localization. Genes Dev 12:1593–1598

    Article  PubMed  CAS  Google Scholar 

  • Heisenberg CP, Tada M, Rauch GJ, Saude L, Concha ML, Geisler R, Stemple DL, Smith JC, Wilson SW (2000) Silberblick/Wntl 1 mediates convergent extension movements during zebrafish gastrulation. Nature 405:76–81

    Article  PubMed  CAS  Google Scholar 

  • Hoek KS, Kidd GJ, Carson JH, Smith R (1998) hnRNP A2 selectively binds the cytoplasmic transport sequence of mvelin basic protein mRNA. Biochemistry 37:7021–7029

    Article  PubMed  CAS  Google Scholar 

  • Horb ME, Thomsen GH (1997) A vegetally localized T-box transcription factor in Xenopus eggs specifies mesoderm and endoderm and is essential for embryonic mesoderm formation. Development 124:1689–1698

    PubMed  CAS  Google Scholar 

  • Houston DW, King ML (2000) A critical role for Xdazl, a germ plasm-localized RNA, in the differentiation of primordial germ cells in Xenopus. Development 127:447–456

    Google Scholar 

  • Houston DW, Zhang J, Maines JZ, Wasserman SA, King ML (1998) A Xenopus DAZ-like gene encodes an RNA component of germ plasm and is a functional homologue of Drosophila boule. Development 125:171–180

    PubMed  CAS  Google Scholar 

  • Hudson C, Woodland HR (1998) Xpat, a gene expressed specifically in germ plasm and primordial germ cells of Xenopus laevis. Mech Dev 73:159–168

    Article  PubMed  CAS  Google Scholar 

  • Hudson JW, Alarcon VB, Elinson RP (1996) Identification of new localized RNAs in the Xenopus oocyte by differential display PCR. Dev Genet 19:190–198

    Article  PubMed  CAS  Google Scholar 

  • Joseph EM, Melton DA (1998) Mutant Vgl ligands disrupt endoderm and mesoderm formation in Xenopus embryos. Development 125:2677–2685

    PubMed  CAS  Google Scholar 

  • Keem K, Smith LD, Wallace RA, Wolf D (1979) Growth rate of oocytes in laboratory-maintained Xenopus laevis. Gamete Res 2:125–135

    Article  Google Scholar 

  • King ML, Zhou Y, Bubunenko M (1999) Polarizing genetic information in the egg: RNA localization in the frog oocyte. Bioessays 21:546–557

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1994) Delocalization of Vgl mRNA from the vegetal cortex in Xenopus oocytes after destruction of Xlsirt RNA. Science 265:1101–1103

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1995) Two distinct pathways for the localization of RNAs at the vegetal cortex in Xenopus oocytes. Development 121:287–297

    PubMed  CAS  Google Scholar 

  • Kloc M, Etkin LD (1998) Apparent continuity between the messenger transport organizer and late RNA localization pathways during oogenesis in Xenopus. Mech Dev 73:95–106

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Spohr G, Etkin LD (1993) Translocation of repetitive RNA sequences with the germ plasm in Xenopus oocytes. Science 262:1712–1714

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Larabell C, Etkin LD (1996) Elaboration of the messenger transport organizer pathway for localization of RNA to the vegetal cortex of Xenopus oocytes. Dev Biol 180:119–130

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Larabell C, Chan APY, Etkin LD (1998) Contribution of METRO pathway localized molecules to the organization of the germ cell lineage. Mech Dev 75:81–93

    Article  PubMed  CAS  Google Scholar 

  • Kloc M, Bilinski S, Pui-Yee Chan A, Etkin LD (2000) The targeting of Xcat2 mRNA to the germinal granules depends on a cis-acting germinal granule localization element within the 3’UTR. Dev Biol 217:221–229

    Article  PubMed  CAS  Google Scholar 

  • Klymkowsky MW, Maynell LA, Nislow C (1991) Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vgl. J Cell Biol 114:787–797

    Article  PubMed  CAS  Google Scholar 

  • Ku M, Melton DA (1993) Xwnt-11: a maternally expressed Xenopus wnt gene. Development 119:1161–1173

    PubMed  CAS  Google Scholar 

  • Litman P, Behar L, Elisha Z, Yisraeli JK, Ginzburg I (1996) Exogenous tau RNA is localized in oocytes: possible evidence for evolutionary conservation of localization mechanisms. Dev Biol 176:86–94

    Article  PubMed  CAS  Google Scholar 

  • Lustig KD, Kroll KL, Sun EE, Kirschner MW (1996) Expression cloning of a Xenopus T-related gene (Xombi) involved in mesodermal patterning and blastopore lip formation. Development 122:4001–4012

    PubMed  CAS  Google Scholar 

  • Melton DA (1987) Translocation of a localized maternal mRNA to the vegetal pole of Xenopus oocytes. Nature 328:80–82

    Article  PubMed  CAS  Google Scholar 

  • Mosquera L, Forristall C, Zhou Y, King ML (1993) An mRNA localized to the vegetal cortex of Xenopus oocytes encodes a protein with nanos-like zinc finger domain. Development 117:377–386

    PubMed  CAS  Google Scholar 

  • Mowry KL (1996) Complex formation between stage-specific oocyte factors and a Xenopus mRNA localization element. Proc Natl Acad Sci USA 93:14608–14613

    Article  PubMed  CAS  Google Scholar 

  • Mowry KL, Cote CA (1999) RNA sorting in Xenopus oocytes and embryos. FASEB J 13:435–445

    PubMed  CAS  Google Scholar 

  • Mowry KL, Melton DA (1992) Vegetal messenger RNA localization directed by a 340-nt RNA sequence element in Xenopus oocytes. Science 255:991–994

    Article  PubMed  CAS  Google Scholar 

  • Norvell A, Kelley RL, Wehr K, Schupbach T (1999) Specific isoforms of squid, a Drosophila hnRNP, perform distinct roles in Gurken localization during oogenesis. Genes Dev 13:864–876

    Article  PubMed  CAS  Google Scholar 

  • Oberman F, Yisraeli JK (1995) Two non-radioactive techniques for in situ hybridization to Xenopus oocytes. Trends Genet 11:83–84

    Article  PubMed  CAS  Google Scholar 

  • Oh YL, Hahm B, Kim YK, Lee HK, Lee JW, Song O, Tsukiyama-Kohara K, Kohara M, Nomoto A, Jang SK (1998) Determination of functional domains in polypyrimidine-tract-binding protein. Biochem J 331:169–175

    PubMed  CAS  Google Scholar 

  • Perez I, McAfee JG, Patton JG (1997) Multiple RRMs contribute to RNA binding specificity and affinity for polypyrimidine tract binding protein. Biochemistry 36:11881–11890

    Article  PubMed  CAS  Google Scholar 

  • Pfaff SL, Taylor WL (1992) Characterization of a Xenopus oocyte factor that binds to a developmentally regulated cis-element in the TFIIIA gene. Dev Biol 151:306–316

    Article  PubMed  CAS  Google Scholar 

  • Pondel M, King ML (1988) Localized maternal mRNA related to transforming growth factor ß mRNA is concentrated in a cytokeratin-enriched fraction from Xenopus oocytes. Proc Natl Acad Sci USA 85:7612–7616

    Article  PubMed  CAS  Google Scholar 

  • Rebagliati MR, Weeks DL, Harvey RP, Melton DA (1985) Identification and cloning of localized maternal RNAs from Xenopus eggs. Cell 42:769–777

    Article  PubMed  CAS  Google Scholar 

  • Reddy BA, Kloc M, Etkin LD (1992) The cloning and characterization of a localized maternal transcript in Xenopus laevis whose zygotic counterpart is detected in the CNS. Mech Dev 39:143–150

    Article  PubMed  CAS  Google Scholar 

  • Roeder AD, Gard DL (1994) Confocal microscopy of F-actin distribution in Xenopus oocytes. Zygote 2:111–124

    Article  PubMed  CAS  Google Scholar 

  • Samuels M, Deshpande G, Schedl P (1998) Activities of the sex-lethal protein in RNA binding and protein:protein interactions. Nucleic Acids Res 26:2625–2637

    Article  PubMed  CAS  Google Scholar 

  • Schnorrer F, Bohmann K, Nusslein-Volhard C (2000) The molecular motor dynein is involved in targeting swallow and bicoid RNA to the anterior pole of Drosophila oocytes. Nat Cell Biol 2:185–190

    Article  PubMed  CAS  Google Scholar 

  • Schroeder KE, Yost HJ (1996) Xenopus poly (A) binding protein maternal RNA is localized during oogenesis and associated with large complexes in blastula. Dev Genet 19:268–276

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SP, Aisenthal L, Elisha Z, Oberman F, Yisraeli JK (1992) A 69-kDa RNA binding protein from Xenopus oocytes recognizes a common motif in two vegetally localized maternal mRNAs. Proc Natl Acad Sci USA 89:11895–11899

    Article  PubMed  CAS  Google Scholar 

  • Stennard F, Carnac G, Gurdon JB (1996) The Xenopus T-box gene, Antipodean, encodes a vegetally localised maternal mRNA and can trigger mesoderm formation. Development 122:4179–4188

    PubMed  CAS  Google Scholar 

  • Thomsen GH, Melton DA (1993) Processed Vgl protein is an axial mesoderm inducer in Xenopus. Cell 74:433–441

    Article  PubMed  CAS  Google Scholar 

  • Wallace RA, Misulovin Z, Wiley HS (1980) Growth of anuran oocytes in serum-supplemented medium. Reprod Nutr Dev 20:699–708

    Article  PubMed  CAS  Google Scholar 

  • Wallingford JB, Rowning BA, Vogeli KM, Rothbacher U, Fraser SE, Harland RM (2000) Dishevelled controls cell polarity during XenoPus gastrulation. Nature 405:81–85

    Google Scholar 

  • Weeks DL, Melton DA (1987) A maternal mRNA localized to the vegetal hemisphere in Xenopus eggs codes for a growth factor related to TGF-ß. Cell 51:861–867

    Article  PubMed  CAS  Google Scholar 

  • Weeks DL, Bailey C, Bullock E, Dagle J, Gururajan R, Linnen J, Longo F (1995) mRNAs localized to the animal hemisphere of Xenopus laevis oocytes and early embryos and the proteins that they encode. In: Lipshitz HD (ed) Localized RNAs. Landes Companv, Austin, pp 173–183

    Google Scholar 

  • Wessely O, De Robertis EM (2000) The Xenopus homologue of Bicaudal-C is a localized maternal mRNA that can induce endoderm formation. Development 127:2053–2062

    PubMed  Google Scholar 

  • Yisraeli JK, Melton DA (1988) The maternal mRNA Vgl is correctly localized following injection into Xenopus oocytes. Nature 336:592–595

    Article  PubMed  CAS  Google Scholar 

  • Yisraeli JK, Sokol S, Melton DA (1990) A two-step model for the localization of a maternal mRNA in Xenopus oocytes: involvement of microtubules and microfilaments in translocation and anchoring of Vgl mRNA. Development 108:289–298

    PubMed  CAS  Google Scholar 

  • Zhang J, King ML (1996) Xenopus VegT RNA is localized to the vegetal cortex during oogenesis and encodes a novel T-box transcription factor involved in mesodermal patterning. Development 122:4119–4129

    PubMed  CAS  Google Scholar 

  • Zhang Q, Yaniv K, Oberman F, Wolke U, Git A, Fromer M, Taylor WL, Meyer D, Standart N, Raz E, Yisraeli JK (1999) Vgl RBP intracellular distribution and evolutionarily conserved expression at multiple stages during development. Mech Dev 88:101–106

    Article  PubMed  CAS  Google Scholar 

  • Zhou Y, King ML (1996a) Localization of Xcat-2 RNA, a putative germ plasm component, to the mitochondrial cloud in Xenopus stage I oocytes. Development 122:2947–2953

    PubMed  CAS  Google Scholar 

  • Zhou Y, King ML (1996b) RNA transport to the vegetal cortex of Xenopus oocytes. Dev Biol 179:173–183

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Rand, K., Yisraeli, J. (2001). RNA Localization in Xenopus Oocytes. In: Richter, D. (eds) Cell Polarity and Subcellular RNA Localization. Results and Problems in Cell Differentiation, vol 34. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-40025-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-40025-7_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-07436-3

  • Online ISBN: 978-3-540-40025-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics