Skip to main content

Power Estimation Approach of Dynamic Data Storage on a Hardware Software Boundary Level

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 2799))

Abstract

In current multimedia applications like 3D graphical processing or games, the run-time memory management support has to allow real-time memory de/allocation, retrieving and data processing. The implementations of these algorithms for embedded platforms require high speed, low power and large data storage capacity. Due to the large hardware/software co-design space, high-level implementation cost estimates are required to avoid expensive design modifications late in the implementation. In this paper, we present an approach designed to do that. Based on memory accesses, normalised memory usage and power estimates, the algorithm code is refined. Furthermore, optimal implementations for the dynamic data types involved can be selected with a considerable power contribution reduction.

This work is partially supported by the Spanish Government Research Grant TIC2002/0750, the Fund for Scientific Research – Flanders (Belgium, F.W.O.) through project G.0036.99 and a Postdoctoral Fellowship for Geert Deconinck.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amrutur, B.S., et al.: Speed and Power Scaling of SRAM’s. IEEE Trans. on Solid-State Circuits 35(2) (2000)

    Google Scholar 

  2. Benin, L., et al.: A power modeling and estimation framework for vliw-based embedded systems. In: Proc. of PATMOS, Yverdon Les Bains, Switzerland, pp. 2.1.1–2.1.10 (2001)

    Google Scholar 

  3. Catthoor, F., et al.: Custom Memory Management Methodology – Exploration of Memory Organisation for Embedded Multimedia System Design. Kluwer Academic Publishers, Boston (1998)

    MATH  Google Scholar 

  4. Chen, R.Y., et al.: Speed and Power Scaling of SRAM’s. ACM Trans. on Design Automation of Electronic Systems 6(1) (2001)

    Google Scholar 

  5. Daylight, E.G., et al.: Incorporating energy efficient data structures into modular software implementations for internet-based embedded systems. In: Proc. of wrkshp on Software Performance (2002)

    Google Scholar 

  6. Horowitz, M.A.: Timing models for mos circuits. Technical report, Technical Report SEL83-003, Integrated Circuits Lab. Stanford Univ. (1983)

    Google Scholar 

  7. Jouppi, N.: Western research laboratory, cacti (2002), http://research.compaq.com/wrl/people/jouppi/CACTI.html

  8. Leeman, M., et al.: Methodology for refinement and optimisation of DM management for embedded systems in multimedia applications. In: Proc. of SiPS, Seoul, Korea (2003)

    Google Scholar 

  9. Leeman, M., et al.: Intermediate variable elimination in a global context for a 3d multimedia pplication. In: Proc. of ICME, Baltimore, MD (2003)

    Google Scholar 

  10. Mudge, T.: Power: A first class architectural design constraint. IEEE Computer 34(4), 52–58 (2001)

    Google Scholar 

  11. Pollefeys, M., et al.: Metric 3D surface reconstruction from uncalibrated image sequences. In: Koch, R., Van Gool, L. (eds.) SMILE 1998. LNCS, vol. 1506, pp. 139–153. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  12. Smaragdakis, Y., et al.: Implementing layered designs with mixin layers. In: Jul, E. (ed.) ECOOP 1998. LNCS, vol. 1445, p. 550. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  13. Stroustrup, B.: The C++ Programming Language. Addison-Wesley Publishing Company, Inc., Harlow (1997)

    Google Scholar 

  14. Tiwari, V., et al.: Power analysis of embedded software: A first step towards software power minimization. In: Proc. of ICCAD, San Jose, California, USA (1994)

    Google Scholar 

  15. Vijaykrishnan, N., et al.: Evaluating integrated hardware-software optimizations using a unified energy estimation framework. IEEE Transactions on Computers 52(1), 59–75 (2003)

    Article  MathSciNet  Google Scholar 

  16. Wuytack, S., et al.: Global communication and memory optimizing transformations for low power systems. In: IEEE Intnl. wrkshp on Low Power Design, Napa CA, pp. 203–208 (1994)

    Google Scholar 

  17. Ykman, C., et al.: Dynamic Memory Management MethodologyApplied to Embedded Telecom etwork Systems. IEEE Transactions on VLSI Systems (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leeman, M. et al. (2003). Power Estimation Approach of Dynamic Data Storage on a Hardware Software Boundary Level. In: Chico, J.J., Macii, E. (eds) Integrated Circuit and System Design. Power and Timing Modeling, Optimization and Simulation. PATMOS 2003. Lecture Notes in Computer Science, vol 2799. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-39762-5_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-39762-5_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-20074-1

  • Online ISBN: 978-3-540-39762-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics