Skip to main content

The Role of the Epigenome in Human Cancers

  • Chapter
Vogel and Motulsky's Human Genetics

Abstract

Deregulation of the epigenome is an important mechanism involved in the development and progression of human diseases such as cancer. As opposed to the irreversible nature of genetic events, which introduce changes in the primary DNA sequence, epigenetic modifications are reversible. The conventional analysis of neo-plasias, however, has preferentially focused on elucidating the genetic contribution to tumorigenesis, which has resulted in a biased and incomplete understanding of the mechanisms involved in tumor formation. Epigenetic alterations, such as aberrant DNA methylation and altered histone modifications, are not only sufficient to induce tumors, but can also modify tumor incidence and even determine the type of neoplasia that will arise in genetic models of cancer. There is clear evidence that the epigenetic landscape in humans undergoes modifications as the result of normal aging. Thus, it has been proposed that the higher incidence of certain disease in older individuals might be, in part, a consequence of an inherent change in the regulation of the epigenome. These observations raise important questions about the degree to which genetic and epigenetic mechanisms cooperate in human tumorigenesis, the identity of the specific cooperating genes, and how these genes interact functionally to determine the diverse biological paths to tumor initiation and progression. The answers to these questions will partially rely on sequencing relevant regions of the 3 billion nucleotide genome, and determining the methylation status of the 30 million CpG dinucleotide methylome at single nucleotide resolution in different types of neoplasias. Here, we also review the emergence and advancement of technologies to map ever larger proportions of the cancer methylome, and the unique discovery potential of integrating these technologies with cancer genomic data. We discuss the knowledge gained from these large-scale analyses in the context of gene discovery, therapeutic application, and building a more widely applicable mechanism-based model of human tumorigenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbosh PH, Montgomery JS, Starkey JA, Novotny M, Zuhowski EG et al (2006) Dominant-negative histone H3 lysine 27 mutant derepresses silenced tumor suppressor genes and reverses the drug-resistant phenotype in cancer cells. Cancer Res 66:5582–5591

    Article  CAS  PubMed  Google Scholar 

  2. Adorjan P, Distler J, Lipscher E, Model F, Muller J et al (2002) Tumour class prediction and discovery by microarray-based DNA methylation analysis. Nucleic Acids Res 30:e21

    Article  PubMed  Google Scholar 

  3. Akama TO, Okazaki Y, Ito M, Okuizumi H, Konno H et al (1997) Restriction landmark genomic scanning (RLGS-M)-based genome-wide scanning of mouse liver tumors for alterations in DNA methylation status. Cancer Res 57:3294–3299

    CAS  PubMed  Google Scholar 

  4. Antequera F, Bird A (1993) Number of CpG islands and genes in human and mouse. Proc Natl Acad Sci USA 90:11995–11999

    Article  CAS  PubMed  Google Scholar 

  5. Baylin S, Bestor TH (2002) Altered methylation patterns in cancer cell genomes: cause or consequence? Cancer Cell 1:299–305

    Article  CAS  PubMed  Google Scholar 

  6. Baylin SB, Ohm JE (2006) Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 6:107–116

    Article  CAS  PubMed  Google Scholar 

  7. Bernstein BE, Meissner A, Lander ES (2007) The mammalian epigenome. Cell 128:669–681

    Article  CAS  PubMed  Google Scholar 

  8. Bibikova M, Lin Z, Zhou L, Chudin E, Garcia EW et al (2006) High-throughput DNA methylation profiling using universal bead arrays. Genome Res 16:383–393

    Article  CAS  PubMed  Google Scholar 

  9. Bock C, Paulsen M, Tierling S, Mikeska T, Lengauer T et al (2006) CpG island methylation in human lymphocytes is highly correlated with DNA sequence, repeats, and predicted DNA structure. PLoS Genet 2:e26

    Article  PubMed  CAS  Google Scholar 

  10. Brena RM, Plass C, Costello JF (2006) Mining methyla-tion for early detection of common cancers. PLoS Med 3:e479

    Article  PubMed  CAS  Google Scholar 

  11. Brena RM, Morrison C, Liyanarachchi S, Jarjoura D, Davuluri RV et al (2007) Aberrant DNA Methylation of OLIG1, a Novel Prognostic Factor in Non-Small Cell Lung Cancer. PLoS Med 4:e108

    Article  PubMed  CAS  Google Scholar 

  12. Cadieux B, Ching TT, Vandenberg SR, Costello JF (2006) Genome-wide Hypomethylation in Human Glioblastomas Associated with Specific Copy Number Alteration, Methylenetetrahydrofolate Reductase Allele Status, and Increased Proliferation. Cancer Res 66:8469–8476

    Article  CAS  PubMed  Google Scholar 

  13. Cairns P, Esteller M, Herman JG, Schoenberg M, Jeronimo C et al (2001) Molecular detection of prostate cancer in urine by GSTP1 hypermethylation. Clin Cancer Res 7:2727–2730

    CAS  PubMed  Google Scholar 

  14. Cameron EE, Bachman KE, Myohanen S, Herman JG, Baylin SB (1999) Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer. Nat Genet 21:103–107

    Article  CAS  PubMed  Google Scholar 

  15. Cantoni GL (1985) The role of S-adenosylhomocysteine in the biological utilization of S-adenosylmethionine. Prog Clin Biol Res 198:47–65

    CAS  PubMed  Google Scholar 

  16. Cardno AG, Rijsdijk FV, Sham PC, Murray RM, McGuffin P (2002) A twin study of genetic relationships between psychotic symptoms. Am J Psychiatry 159:539–545

    Article  PubMed  Google Scholar 

  17. Cavenee WK, Dryja TP, Phillips RA, Benedict WF, Godbout R et al (1983) Expression of recessive alleles by chromosomal mechanisms in retinoblastoma. Nature 305:779–784

    Article  CAS  PubMed  Google Scholar 

  18. Chen RZ, Pettersson U, Beard C, Jackson-Grusby L, Jaenisch R (1998) DNA hypomethylation leads to elevated mutation rates. Nature 395:89–93

    Article  CAS  PubMed  Google Scholar 

  19. Chen YT, Stockert E, Chen Y, Garin-Chesa P, Rettig WJ et al (1994) Identification of the MAGE-1 gene product by monoclonal and polyclonal antibodies. Proc Natl Acad Sci USA 91:1004–1008

    Article  CAS  PubMed  Google Scholar 

  20. Ching TT, Maunakea AK, Jun P, Hong C, Zardo G et al (2005) Epigenome analyses using BAC microarrays identify evolutionary conservation of tissue-specific methylation of SHANK3. Nat Genet 37:645–651

    Article  CAS  PubMed  Google Scholar 

  21. Cokus SJ, Feng S, Zhang X, Chen Z, Merriman B et al (2008) Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452:215–219

    Article  CAS  PubMed  Google Scholar 

  22. Conway KE, McConnell BB, Bowring CE, Donald CD, Warren ST et al (2000) TMS1, a novel proapoptotic caspase recruitment domain protein, is a target of methylation-induced gene silencing in human breast cancers. Cancer Res 60:6236–6242

    CAS  PubMed  Google Scholar 

  23. Costello JF (2003) DNA methylation in brain development and gliomagenesis. Front Biosci 8:S175–S184

    Article  CAS  PubMed  Google Scholar 

  24. Costello JF, Plass C (2001) Methylation matters. J Med Genet 38:285–303

    Article  CAS  PubMed  Google Scholar 

  25. Costello JF, Futscher BW, Kroes RA, Pieper RO (1994) Methylation-related chromatin structure is associated with exclusion of transcription factors from and suppressed expression of the O-6-methylguanine DNA methyltrans-ferase gene in human glioma cell lines. Mol Cell Biol 14:6515–6521

    CAS  PubMed  Google Scholar 

  26. Costello JF, Futscher BW, Tano K, Graunke DM, Pieper RO (1994) Graded methylation in the promoter and body of the O -6-methylguanine DNA methyltransferase (MGMT) gene correlates with MGMT expression in human glioma cells. J Biol Chem 269:17228–17237

    CAS  PubMed  Google Scholar 

  27. Costello JF, Fruhwald MC, Smiraglia DJ, Rush LJ, Robertson GP et al (2000) Aberrant CpG-island methyla-tion has non-random and tumour-type-specific patterns. Nat Genet 24:132–138

    Article  CAS  PubMed  Google Scholar 

  28. Cui H, Cruz-Correa M, Giardiello FM, Hutcheon DF, Kafonek DR et al (2003) Loss of IGF2 imprinting: a potential marker of colorectal cancer risk. Science 299:1753–1755

    Article  CAS  PubMed  Google Scholar 

  29. Dai Z, Weichenhan D, Wu YZ, Hall JL, Rush LJ et al (2002) An AscI boundary library for the studies of genetic and epigenetic alterations in CpG islands. Genome Res 12:1591–1598

    Article  CAS  PubMed  Google Scholar 

  30. Dai ZY, Lakshmanan RR, Zhu WG, Smiraglia DJ, Rush LJ et al (2001) Global methylation profiling of lung cancer identifies novel methylated genes. Neoplasia 3:314–323

    Article  CAS  PubMed  Google Scholar 

  31. Das R, Dimitrova N, Xuan Z, Rollins RA, Haghighi F et al (2006) Computational prediction of methylation status in human genomic sequences. Proc Natl Acad Sci USA 103:10713–10716

    Article  CAS  PubMed  Google Scholar 

  32. Davies H, Bignell GR, Cox C, Stephens P, Edkins S et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  33. Davies H, Hunter C, Smith R, Stephens P, Greenman C et al (2005) Somatic mutations of the protein kinase gene family in human lung cancer. Cancer Res 65:7591–7595

    CAS  PubMed  Google Scholar 

  34. Diala ES, Cheah MS, Rowitch D, Hoffman RM (1983) Extent of DNA methylation in human tumor cells. J Natl Cancer Inst 71:755–764

    CAS  PubMed  Google Scholar 

  35. Di Croce L, Raker VA, Corsaro M, Fazi F, Fanelli M et al (2002) Methyltransferase recruitment and DNA hyperm-ethylation of target promoters by an oncogenic transcription factor. Science 295:1079–1082

    Article  Google Scholar 

  36. Eckhardt F, Lewin J, Cortese R, Rakyan VK, Attwood J et al (2006) DNA methylation profiling of human chromosomes 6, 20 and 22. Nat Genet 38:1378–1385

    Article  CAS  PubMed  Google Scholar 

  37. Ehrich M, Nelson MR, Stanssens P, Zabeau M, Liloglou T et al (2005) Quantitative high-throughput analysis of DNA methylation patterns by base-specific cleavage and mass spectrometry. Proc Natl Acad Sci USA 102:15785–15790

    Article  CAS  PubMed  Google Scholar 

  38. Ehrlich M (2000) DNA methylation: normal development, inherited diseases, and cancer. J Clin Ligand Assay 23:144–146

    Google Scholar 

  39. Ehrlich M, Gama-Sosa MA, Huang L-H, Midgett RM, Kuo KC et al (1982) Amount and distribution of 5-methylcyto-sine in human DNA from different types of tissues and cells. Nucleic Acids Res 10:2709–2721

    Article  CAS  PubMed  Google Scholar 

  40. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylat-ing agents. N Engl J Med 343:1350–1354

    Article  CAS  PubMed  Google Scholar 

  41. Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X et al (2000) Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst 92:564–569

    Article  CAS  PubMed  Google Scholar 

  42. Esteller M, Risques RA, Toyota M, Capella G, Moreno V et al (2001) Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res 61:4689–4692

    CAS  PubMed  Google Scholar 

  43. Fan GP, Beard C, Chen RZ, Csankovszki G, Sun Y et al (2001) DNA hypomethylation perturbs the function and survival of CNS neurons in postnatal animals. J Neurosci 21:788–797

    CAS  PubMed  Google Scholar 

  44. Fang F, Fan S, Zhang X, Zhang MQ (2006) Predicting methylation status of CpG islands in the human brain. Bioinformatics 22:2204–2209

    Article  CAS  PubMed  Google Scholar 

  45. Feinberg AP (2005) Cancer epigenetics is no Mickey Mouse. Cancer Cell 8:267–268

    Article  CAS  PubMed  Google Scholar 

  46. Feinberg AP, Tycko B (2004) The history of cancer epige-netics. Nat Rev Cancer 4:143–153

    Article  CAS  PubMed  Google Scholar 

  47. Feinberg AP, Vogelstein B (1983) Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature 301:89–92

    Article  CAS  PubMed  Google Scholar 

  48. Feinberg AP, Gehrke CW, Kuo KC, Ehrlich M (1988) Reduced genomic 5-methylcytosine content in human colonic neoplasia. Cancer Res 48:1159–1161

    CAS  PubMed  Google Scholar 

  49. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7:21–33

    Article  CAS  PubMed  Google Scholar 

  50. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM (2003) Predicting aberrant CpG island methylation. Proc Natl Acad Sci USA 100:12253–12258

    Article  CAS  PubMed  Google Scholar 

  51. Feltus FA, Lee EK, Costello JF, Plass C, Vertino PM (2006) DNA motifs associated with aberrant CpG island methyla-tion. Genomics 87:572–579

    Article  CAS  PubMed  Google Scholar 

  52. Ferguson AT, Evron E, Umbricht CB, Pandita TK, Chan TA et al (2000) High frequency of hypermethylation at the 14–3-3 sigma locus leads to gene silencing in breast cancer. Proc Natl Acad Sci USA 97:6049–6054

    Article  CAS  PubMed  Google Scholar 

  53. Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F et al (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  Google Scholar 

  54. Fraga MF, Ballestar E, Villar-Garea A, Boix-Chornet M, Espada J et al (2005) Loss of acetylation at Lys16 and trim-ethylation at Lys20 of histone H4 is a common hallmark of human cancer. Nat Genet 37:391–400

    Article  CAS  PubMed  Google Scholar 

  55. Frigola J, Song J, Stirzaker C, Hinshelwood RA, Peinado MA et al (2006) Epigenetic remodeling in colorectal cancer results in coordinate gene suppression across an entire chromosome band. Nat Genet 38:540–549

    Article  CAS  PubMed  Google Scholar 

  56. Frommer M, McDonald LE, Millar DS, Collis CM, Watt F et al (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci USA 89:1827–1831

    Article  CAS  PubMed  Google Scholar 

  57. Gama-Sosa MA, Wang RY, Kuo KC, Gehrke CW, Ehrlich M (1983) The 5-methylcytosine content of highly repeated sequences in human DNA. Nucleic Acids Res 11:3087–3095

    Article  CAS  PubMed  Google Scholar 

  58. Gama-Sosa MA, Slagel VA, Trewyn RW, Oxenhandler R, Kuo KC et al (1983) The 5-methylcytosine content of DNA from human tumors. Nucleic Acids Res 11:6883–6894

    Article  CAS  PubMed  Google Scholar 

  59. Garber K (2006) Momentum building for human epigenome project. J Natl Cancer Inst 98:84–86

    PubMed  Google Scholar 

  60. Gartner K (1990) A third component causing random variability beside environment and genotype. A reason for the limited success of a 30 year long effort to standardize laboratory animals? Lab Anim 24:71–77

    Article  CAS  PubMed  Google Scholar 

  61. Gaudet F, Hodgson JG, Eden A, Jackson-Grusby L, Dausman J et al (2003) Induction of tumors in mice by genomic hypomethylation. Science 300:489–492

    Article  CAS  PubMed  Google Scholar 

  62. Gaudet F, Rideout WM 3rd, Meissner A, Dausman J, Leonhardt H et al (2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the maintenance of IAP silencing. Mol Cell Biol 24:1640–1648

    Article  CAS  PubMed  Google Scholar 

  63. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128:635–638

    Article  CAS  PubMed  Google Scholar 

  64. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E et al (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424

    Article  CAS  PubMed  Google Scholar 

  65. Grady WM, Willis J, Guilford PJ, Dunbier AK, Toro TT et al (2000) Methylation of the CDH1 promoter as the second genetic hit in hereditary diffuse gastric cancer. Nat Genet 26:16–17

    Article  CAS  PubMed  Google Scholar 

  66. Greger V, Passarge E, Höpping W, Messmer E, Horsthemke B (1989) Epigenetic changes may contribute to the formation and spontaneous regression of retinoblastoma. Hum Genet 83:155–158

    Article  CAS  PubMed  Google Scholar 

  67. Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK et al (1999) The DNMT3B DNA methyltransferase gene is mutated in the ICF immunodeficiency syndrome. Proc Natl Acad Sci USA 96:14412–14417

    Article  CAS  PubMed  Google Scholar 

  68. Harris LC, Remack JS, Brent TP (1994) In vitro methyla-tion of the human O6-methylguanine-DNA methyltrans-ferase promoter reduces transcription. Biochim Biophys Acta 1217:141–146

    CAS  PubMed  Google Scholar 

  69. Hatada I, Hayashizaki Y, Hirotsune S, Komatsubara H, Mukai T (1991) A genomic scanning method for higher organisms using restriction sites as landmarks. Proc Natl Acad Sci USA 88:9523–9527

    Article  CAS  PubMed  Google Scholar 

  70. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N et al (2005) MGMT gene silencing and benefit from temo-zolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  71. Hellman A, Chess A (2007) Gene body-specific methyla-tion on the active X chromosome. Science 315:1141–1143

    Article  CAS  PubMed  Google Scholar 

  72. Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington's canal. Nat Rev Mol Cell Biol 10:526–537

    Article  CAS  PubMed  Google Scholar 

  73. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  CAS  PubMed  Google Scholar 

  74. Herman JG, Umar A, Polyak K, Graff JR, Ahuja N et al (1998) Incidence and functional consequences of hMLH1 promoter hypermethylation in colorectal carcinoma. Proc Natl Acad Sci USA 95:6870–6875

    Article  CAS  PubMed  Google Scholar 

  75. Higgins ME, Claremont M, Major JE, Sander C, Lash AE (2007) CancerGenes: a gene selection resource for cancer genome projects. Nucleic Acids Res 35:D721–D726

    Article  CAS  PubMed  Google Scholar 

  76. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83:296–321

    Article  CAS  PubMed  Google Scholar 

  77. Holm TM, Jackson-Grusby L, Brambrink T, Yamada Y, Rideout WM 3rd et al (2005) Global loss of imprinting leads to widespread tumorigenesis in adult mice. Cancer Cell 8:275–285

    Article  CAS  PubMed  Google Scholar 

  78. Hong C, Bollen MIA, Costello JF (2003) The contribution of genetic and epigenetic mechanisms to gene silencing in oligodendrogliomas. Cancer Res 63:7600–7605

    CAS  PubMed  Google Scholar 

  79. Hong C, Maunakea A, Jun P, Bollen AW, Hodgson JG et al (2005) Shared epigenetic mechanisms in human and mouse gliomas inactivate expression of the growth suppressor SLC5A8. Cancer Res 65:3617–3623

    Article  CAS  PubMed  Google Scholar 

  80. Hong C, Moorefield KS, Jun P, Aldape KD, Kharbanda S et al (2007) Epigenome scans and cancer genome sequencing converge on WNK2, a kinase-independent suppressor of cell growth. Proc Natl Acad Sci USA 104:10974–10979

    Article  CAS  PubMed  Google Scholar 

  81. Hu M, Yao J, Cai L, Bachman KE, van den Brule F et al (2005) Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet 37:899–905

    Article  CAS  PubMed  Google Scholar 

  82. Huang TH, Laux DE, Hamlin BC, Tran P, Tran H et al (1997) Identification of DNA methylation markers for human breast carcinomas using the methylation-sensitive restriction fingerprinting technique. Cancer Res 57:1030–1034

    CAS  PubMed  Google Scholar 

  83. Iacobuzio-Donahue CA, Maitra A, Olsen M, Lowe AW, van Heek NT et al (2003) Exploration of global gene expression patterns in pancreatic adenocarcinoma using cDNA microar-rays. Am J Pathol 162:1151–1162

    CAS  PubMed  Google Scholar 

  84. Ishkanian AS, Malloff CA, Watson SK, DeLeeuw RJ, Chi B et al (2004) A tiling resolution DNA microarray with complete coverage of the human genome. Nat Genet 36:299–303

    Article  CAS  PubMed  Google Scholar 

  85. Jeltsch A, Walter J, Reinhardt R, Platzer M (2006) German human methylome project started. Cancer Res 66:7378

    Article  CAS  PubMed  Google Scholar 

  86. Jia D, Jurkowska RZ, Zhang X, Jeltsch A, Cheng X (2007) Structure of Dnmt3a bound to Dnmt3L suggests a model for de novo DNA methylation. Nature 449:248–251

    Article  CAS  PubMed  Google Scholar 

  87. Jones PA (2005) Overview of cancer epigenetics. Semin Hematol 42:S3–S8

    Article  CAS  PubMed  Google Scholar 

  88. Jones PA, Baylin SB (2002) The fundamental role of epige-netic events in cancer. Nat Rev Genet 3:415–428

    Article  CAS  PubMed  Google Scholar 

  89. Jones PA, Baylin SB (2007) The Epigenomics of Cancer. Cell 128:683–692

    Article  CAS  PubMed  Google Scholar 

  90. Jones PA, Martienssen R (2005) A blueprint for a human epigenome project: the AACR human epigenome workshop. Cancer Res 65:11241–11246

    Article  CAS  PubMed  Google Scholar 

  91. Kane MF, Loda M, Gaida GM, Lipman J, Mishra R et al (1997) Methylation of the hMLH1 promoter correlates with lack of expression of hMLH1 in sporadic colon tumors and mismatch repair-defective human tumor cell lines. Cancer Res 57:808–811

    CAS  PubMed  Google Scholar 

  92. Karpf AR, Jones DA (2002) Reactivating the expression of methylation silenced genes in human cancer. Oncogene 21:5496–5503

    Article  CAS  PubMed  Google Scholar 

  93. Karpf AR, Peterson PW, Rawlins JT, Dalley BK, Yang Q et al (1999) Inhibition of DNA methyltransferase stimulates the expression of signal transducer and activator of transcription 1, 2, and 3 genes in colon tumor cells. Proc Natl Acad Sci USA 96:14007–14012

    Article  CAS  PubMed  Google Scholar 

  94. Katzenellenbogen RA, Baylin SB, Herman JG (1999) Hypermethylation of the DAP-Kinase CpG island is a common alteration in B-cell malignancies. Blood 93:4347–4353

    CAS  PubMed  Google Scholar 

  95. Kawai J, Hirotsune S, Hirose K, Fushiki S, Watanabe S et al (1993) Methylation Profiles of Genomic Dna of Mouse Developmental Brain Detected By Restriction Landmark Genomic Scanning (Rlgs) Method. Nucleic Acids Res 21:5604–5608

    Article  CAS  PubMed  Google Scholar 

  96. Kazazian HH, Moran JV (1998) The impact of L1 ret-rotransposons on the human genome. Nat Genet 19:19–24

    Article  CAS  PubMed  Google Scholar 

  97. Keshet I, Schlesinger Y, Farkash S, Rand E, Hecht M et al (2006) Evidence for an instructive mechanism of de novo methylation in cancer cells. Nat Genet 38:149–153

    Article  CAS  PubMed  Google Scholar 

  98. Khulan B, Thompson RF, Ye K, Fazzari MJ, Suzuki M et al (2006) Comparative isoschizomer profiling of cyto-sine methylation: the HELP assay. Genome Res 16:1046–1055

    Article  CAS  PubMed  Google Scholar 

  99. Kissil JL, Feinstein E, Cohen O, Jones PA, Tsai YC et al (1997) DAP-kinase loss of expression in various carcinoma and B-cell lymphoma cell lines: possible implications for role as tumor suppressor gene. Oncogene 15:403–407

    Article  CAS  PubMed  Google Scholar 

  100. Knudson AG (1971) Mutation and cancer: statistical study of retinoblastoma. Proc Natl Acad Sci USA 69:820–823

    Article  Google Scholar 

  101. Kochanek S, Renz D, Doerfler W (1993) DNA methyla-tion in the Alu sequences of diploid and haploid primary human cells. EMBO J 12:1141–1151

    CAS  PubMed  Google Scholar 

  102. Kouzarides T (2007) Chromatin modifications and their function. Cell 128:693–705

    Article  CAS  PubMed  Google Scholar 

  103. Kouzarides T (2007) SnapShot: histone-modifying enzymes. Cell 128:802

    CAS  Google Scholar 

  104. Krassenstein R, Sauter E, Dulaimi E, Battagli C, Ehya H et al (2004) Detection of breast cancer in nipple aspirate fluid by CpG island hypermethylation. Clin Cancer Res 10:28–32

    Article  CAS  PubMed  Google Scholar 

  105. Kuromitsu J, Kataoka H, Yamashita H, Muramatsu M, Furuichi Y, Sekine T et al (1995) Reproducible alterations of DNA methylation at a specific population of CpG islands during blast formation of peripheral blood lymphocytes. DNA Res 2:263–267

    Article  CAS  PubMed  Google Scholar 

  106. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3:253–266

    Article  CAS  PubMed  Google Scholar 

  107. Laird PW, Jackson-Grusby L, Fazeli A, Dickinson SL, Jung WE et al (1995) Suppression of intestinal neoplasia by DNA hypomethylation. Cell 81:197–205

    Article  CAS  PubMed  Google Scholar 

  108. Lee EB, Park TI, Park SH, Park JY (2003) Loss of heterozygosity on the long arm of chromosome 21 in non-small cell lung cancer. Ann Thorac Surg 75:1597–1600

    Article  PubMed  Google Scholar 

  109. Li E, Bestor TH, Jaenisch R (1992) Targeted Mutation of the Dna Methyltransferase Gene Results in Embryonic Lethality. Cell 69:915–926

    Article  CAS  PubMed  Google Scholar 

  110. Liang GN, Robertson KD, Talmadge C, Sumegi J, Jones PA (2000) The gene for a novel transmembrane protein containing epidermal growth factor and follistatin domains is frequently hypermethylated in human tumor cells. Cancer Res 60:4907–4912

    CAS  PubMed  Google Scholar 

  111. Lindsay S, Bird AP (1987) Use of restriction enzymes to detect potential gene sequences in mammalian DNA. Nature 327:336–338

    Article  CAS  PubMed  Google Scholar 

  112. Lippman Z, Gendrel AV, Black M, Vaughn MW, Dedhia N et al (2004) Role of transposable elements in heterochro-matin and epigenetic control. Nature 430:471–476

    Article  CAS  PubMed  Google Scholar 

  113. Lister R, O'Malley RC, Tonti-Filippini J, Gregory BD, Berry CC et al (2008) Highly integrated single-base resolution maps of the epigenome in Arabidopsis. Cell 133:523–536

    Article  CAS  PubMed  Google Scholar 

  114. Maraschio P, Zuffardi O, Dalla Fior T, Tiepolo L (1988) Immunodeficiency, centromeric heterochromatin instability of chromosomes 1, 9, and 16, and facial anomalies: the ICF syndrome. J Med Genet 25:173–180

    Article  CAS  PubMed  Google Scholar 

  115. Meissner A, Gnirke A, Bell GW, Ramsahoye B, Lander ES et al (2005) Reduced representation bisulfite sequencing for comparative high-resolution DNA methylation analysis. Nucleic Acids Res 33:5868–5877

    Article  CAS  PubMed  Google Scholar 

  116. Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E et al (1995) 5' CpG island methylation is associated with tran-scriptional silencing of the tumour suppressor p16/ CDKN2/MTS1 in human cancers. Nat Med 1:686–692

    Article  CAS  PubMed  Google Scholar 

  117. Millar DS, Paul CL, Molloy PL, Clark SJ (2000) A distinct sequence (ATAAA)(n) separates methylated and unmethy-lated domains at the 5′-end of the GSTP1 CpG island. J Biol Chem 275:24893–24899

    Article  CAS  PubMed  Google Scholar 

  118. Misawa A, Inoue J, Sugino Y, Hosoi H, Sugimoto T et al (2005) Methylation-associated silencing of the nuclear receptor 1I2 gene in advanced-type neuroblastomas, iden-tified by bacterial artificial chromosome array-based methylated CpG island amplification. Cancer Res 65:10233–10242

    Article  CAS  PubMed  Google Scholar 

  119. Morgan DK, Whitelaw E (2008) The case for transgenera-tional epigenetic inheritance in humans. Mamm Genome 19:394–397

    Article  PubMed  Google Scholar 

  120. Myöhänen SK, Baylin SB, Herman JG (1998) Hypermethylation can selectively silence individual p16ink4A alleles in neoplasia. Cancer Res 58:591–593

    PubMed  Google Scholar 

  121. Novak P, Jensen T, Oshiro MM, Wozniak RJ, Nouzova M et al (2006) Epigenetic inactivation of the HOXA gene cluster in breast cancer. Cancer Res 66:10664–10670

    Article  CAS  PubMed  Google Scholar 

  122. Ohm JE, McGarvey KM, Yu X, Cheng L, Schuebel KE et al (2007) A stem cell-like chromatin pattern may predispose tumor suppressor genes to DNA hypermethylation and heritable silencing. Nat Genet 39:237–242

    Article  CAS  PubMed  Google Scholar 

  123. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyl-transferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257

    Article  CAS  PubMed  Google Scholar 

  124. Okano M, Takebayashi S, Okumura K, Li E (1999) Assignment of cytosine-5 DNA methyltransferases Dnmt3a and Dnmt3b to mouse chromosome bands 12A2–A3 and 2H1 by in situ hybridization. Cytogenet Cell Genet 86:333–334

    Article  CAS  PubMed  Google Scholar 

  125. Ooi SK, Qiu C, Bernstein E, Li K, Jia D et al (2007) DNMT3L connects unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448:714–717

    Article  CAS  PubMed  Google Scholar 

  126. Plass C, Weichenhan D, Catanese J, Costello JF, Yu F et al (1997) An arrayed human not I-EcoRV boundary library as a tool for RLGS spot analysis. DNA Res 4:253–255

    Article  CAS  PubMed  Google Scholar 

  127. Pogribny IP, Basnakian AG, Miller BJ, Lopatina NG, Poirier LA et al (1995) Breaks in genomic DNA and within the p53 gene are associated with hypomethylation in livers of folate/methyl-deficient rats. Cancer Res 55:1894–1901

    CAS  PubMed  Google Scholar 

  128. Pogribny IP, James SJ, Jernigan S, Pogribna M (2004) Genomic hypomethylation is specific for preneoplastic liver in folate/methyl deficient rats and does not occur in non-target tissues. Mutat Res 548:53–59

    CAS  PubMed  Google Scholar 

  129. Qiu J (2006) Epigenetics: unfinished symphony. Nature 441:143–145

    Article  CAS  PubMed  Google Scholar 

  130. Rakyan VK, Hildmann T, Novik KL, Lewin J, Tost J et al (2004) DNA methylation profiling of the human major his-tocompatibility complex: a pilot study for the human epigenome project. PLoS Biol 2:e405

    Article  PubMed  CAS  Google Scholar 

  131. Rauch T, Li H, Wu X, Pfeifer GP (2006) MIRA-Assisted Microarray Analysis, a New Technology for the Determination of DNA Methylation Patterns, Identifies Frequent Methylation of Homeodomain-Containing Genes in Lung Cancer Cells. Cancer Res 66:7939–7947

    Article  CAS  PubMed  Google Scholar 

  132. Raval A, Lucas DM, Matkovic JJ, Bennett KL, Liyanarachchi S et al (2005) TWIST2 demonstrates differential methylation in immunoglobulin variable heavy chain mutated and unmutated chronic lymphocytic leukemia. J Clin Oncol 23:3877–3885

    Article  CAS  PubMed  Google Scholar 

  133. Reilly KM, Broman KW, Bronson RT, Tsang S, Loisel DA et al (2006) An imprinted locus epistatically influences Nstr1 and Nstr2 to control resistance to nerve sheath tumors in a neurofibromatosis type 1 mouse model. Cancer Res 66:62–68

    Article  CAS  PubMed  Google Scholar 

  134. Rein T, DePamphilis ML, Zorbas H (1998) Identifying 5-methylcytosine and related modifications in DNA genomes. Nucleic Acids Res 26:2255–2264

    Article  CAS  PubMed  Google Scholar 

  135. Reynolds PA, Sigaroudinia M, Zardo G, Wilson MB, Benton GM et al (2006) Tumor suppressor p16INK4A regulates polycomb-mediated DNA hypermethylation in human mammary epithelial cells. J Biol Chem 281:24790–24802

    Article  CAS  PubMed  Google Scholar 

  136. Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ et al (2006) Large-scale structure of genomic methylation patterns. Genome Res 16:157–163

    Article  CAS  PubMed  Google Scholar 

  137. Rush LJ, Plass C (2002) Restriction landmark genomic scanning for DNA methylation in cancer: past, present, and future applications. Anal Biochem 307:191–201

    Article  CAS  PubMed  Google Scholar 

  138. Rush LJ, Dai ZY, Smiraglia DJ, Gao X, Wright FA et al (2001) Novel methylation targets in de novo acute myeloid leukemia with prevalence of chromosome 11 loci. Blood 97:3226–3233

    Article  CAS  PubMed  Google Scholar 

  139. Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM et al (1991) Allele-specific hypermethylation of the retino-blastoma tumor-suppressor gene. Am J Hum Genet 48:880–888

    CAS  PubMed  Google Scholar 

  140. Sandovici I, Kassovska-Bratinova S, Loredo-Osti JC, Leppert M, Suarez A et al (2005) Interindividual variability and parent of origin DNA methylation differences at spe-cific human Alu elements. Hum Mol Genet 14:2135–2143

    Article  CAS  PubMed  Google Scholar 

  141. Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  CAS  PubMed  Google Scholar 

  142. Sato N, Maitra A, Fukushima N, van Heek NT, Matsubayashi H et al (2003) Frequent hypomethylation of multiple genes overexpressed in pancreatic ductal adeno-carcinoma. Cancer Res 63:4158–4166

    CAS  PubMed  Google Scholar 

  143. Sato N, Fukushima N, Matsubayashi H, Goggins M (2004) Identification of maspin and S100P as novel hypomethyla-tion targets in pancreatic cancer using global gene expression profiling. Oncogene 23:1531–1538

    Article  CAS  PubMed  Google Scholar 

  144. Schlesinger Y, Straussman R, Keshet I, Farkash S, Hecht M et al (2007) Polycomb-mediated methylation on Lys27 of histone H3 pre-marks genes for de novo methylation in cancer. Nat Genet 39:232–236

    Article  CAS  PubMed  Google Scholar 

  145. Schumacher A, Kapranov P, Kaminsky Z, Flanagan J, Assadzadeh A et al (2006) Microarray-based DNA methy-lation profiling: technology and applications. Nucleic Acids Res 34:528–542

    Article  CAS  PubMed  Google Scholar 

  146. Shames DS, Girard L, Gao B, Sato M, Lewis CM et al (2006) A genome-wide screen for promoter methylation in lung cancer identifies novel methylation markers for multiple malignancies. PLoS Med 3:e486

    Article  PubMed  CAS  Google Scholar 

  147. Shivapurkar N, Poirier LA (1983) Tissue levels of S-adenosylmethionine and S-adenosylhomocysteine in rats fed methyl-deficient, amino acid-defined diets for one to five weeks. Carcinogenesis 4:1051–1057

    Article  CAS  PubMed  Google Scholar 

  148. Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR et al (2006) Histone H4–K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847

    Article  CAS  PubMed  Google Scholar 

  149. Simon MD, Chu F, Racki LR, de la Cruz CC, Burlingame AL et al (2007) The site-specific installation of methyl-lysine analogs into recombinant histones. Cell 128:1003–1012

    Article  CAS  PubMed  Google Scholar 

  150. Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J et al (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    Article  PubMed  CAS  Google Scholar 

  151. Smiraglia DJ, Fruhwald MC, Costello JF, McCormick SP, Dai Z et al (1999) A new tool for the rapid cloning of amplified and hypermethylated human DNA sequences from restriction landmark genome scanning gels. Genomics 58:254–262

    Article  CAS  PubMed  Google Scholar 

  152. Smiraglia DJ, Rush LJ, Fruhwald MC, Dai ZY, Held WA et al (2001) Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Hum Mol Genet 10:1413–1419

    Article  CAS  PubMed  Google Scholar 

  153. Smith JF, Mahmood S, Song F, Morrow A, Smiraglia D et al (2007) Identification of DNA methylation in 3' genomic regions that are associated with upregulation of gene expression in colorectal cancer. Epigenetics 2:161–172

    Article  PubMed  Google Scholar 

  154. Smith JS, Costello JF (2006) A broad band of silence. Nat Genet 38:504–506

    Article  CAS  PubMed  Google Scholar 

  155. Smith LT, Lin M, Brena RM, Lang JC, Schuller DE et al (2006) Epigenetic regulation of the tumor suppressor gene TCF21 on 6q23–q24 in lung and head and neck cancer. Proc Natl Acad Sci USA 103:982–987

    Article  CAS  PubMed  Google Scholar 

  156. Song F, Smith JF, Kimura MT, Morrow AD, Matsuyama T et al (2005) Association of tissue-specific differentially methylated regions (TDMs) with differential gene expression. Proc Natl Acad Sci USA 102:3336–3341

    Article  CAS  PubMed  Google Scholar 

  157. Song JZ, Stirzaker C, Harrison J, Melki JR, Clark SJ (2002) Hypermethylation trigger of the glutathione-S-transferase gene (GSTP1) in prostate cancer cells. Oncogene 21:1048–1061

    Article  CAS  PubMed  Google Scholar 

  158. Stirzaker C, Millar DS, Paul CL, Warnecke PM, Harrison J et al (1997) Extensive DNA methylation spanning the Rb promoter in retinoblastoma tumors. Cancer Res 57:2229–2237

    CAS  PubMed  Google Scholar 

  159. Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M et al (2002) A genomic screen for genes upreg-ulated by demethylation and histone deacetylase inhibition in human colorectal cancer. Nat Genet 31:141–149

    Article  CAS  PubMed  Google Scholar 

  160. Takizawa T, Nakashima K, Namihira M, Ochiai W, Uemura A et al (2001) DNA methylation is a critical cell-intrinsic determinant of astrocyte differentiation in the fetal brain. Dev Cell 1:749–758

    Article  CAS  PubMed  Google Scholar 

  161. Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J et al (2000) Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 6:529–535

    Article  CAS  PubMed  Google Scholar 

  162. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB et al (1999) CpG island methylator phenotype in col-orectal cancer. Proc Natl Acad Sci USA 96:8681–8686

    Article  CAS  PubMed  Google Scholar 

  163. Trasler JM, Trasler DG, Bestor TH, Li E, Ghibu F (1996) DNA methyltransferase in normal and Dnmtn/Dnmtn mouse embryos. Dev Dyn 206:239–247

    Article  CAS  PubMed  Google Scholar 

  164. Tremblay KD, Duran KL, Bartolomei MS (1997) A 5' 2-kilobase-pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol 17:4322–4329

    CAS  PubMed  Google Scholar 

  165. Trinh BN, Long TI, Nickel AE, Shibata D, Laird PW (2002) DNA methyltransferase deficiency modifies cancer susceptibility in mice lacking DNA mismatch repair. Mol Cell Biol 22:2906–2917

    Article  CAS  PubMed  Google Scholar 

  166. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ et al (2001) The sequence of the human genome. Science 291:1304–1351

    Article  CAS  PubMed  Google Scholar 

  167. Vire E, Brenner C, Deplus R, Blanchon L, Fraga M et al (2006) The Polycomb group protein EZH2 directly controls DNA methylation. Nature 439:871–874

    Article  CAS  PubMed  Google Scholar 

  168. Wainfan E, Poirier LA (1992) Methyl groups in carcino-genesis: effects on DNA methylation and gene expression. Cancer Res 52:2071s–2077s

    CAS  PubMed  Google Scholar 

  169. Wales MM, Biel MA, Eldeiry W, Nelkin BD, Issa P et al (1995) P53 Activates Expression of Hic-1, a New Candidate Tumour Suppressor Gene On 17p13.3. Nat Med 1:570–577

    Article  CAS  PubMed  Google Scholar 

  170. Wang Y, Hayakawa J, Long F, Yu Q, Cho AH et al (2005) “Promoter array” studies identify cohorts of genes directly regulated by methylation, copy number change, or transcription factor binding in human cancer cells. Ann NY Acad Sci 1058:162–185

    Article  CAS  PubMed  Google Scholar 

  171. Waterland RA, Jirtle RL (2004) Early nutrition, epigenetic changes at transposons and imprinted genes, and enhanced susceptibility to adult chronic diseases. Nutrition 20:63–68

    Article  CAS  PubMed  Google Scholar 

  172. Weber M, Davies JJ, Wittig D, Oakeley EJ, Haase M et al (2005) Chromosome-wide and promoter-specific analyses identify sites of differential DNA methylation in normal and transformed human cells. Nat Genet 37:853–862

    Article  CAS  PubMed  Google Scholar 

  173. Weisenberger DJ, Siegmund KD, Campan M, Young J, Long TI et al (2006) CpG island methylator phenotype underlies sporadic microsatellite instability and is tightly associated with BRAF mutation in colorectal cancer. Nat Genet 38:787–793

    Article  CAS  PubMed  Google Scholar 

  174. Welch DR, Chen P, Miele ME, McGary CT, Bower JM et al (1994) Microcell-mediated transfer of chromosome 6 into metastatic human C8161 melanoma cells suppresses metastasis but does not inhibit tumorigenicity. Oncogene 9:255–262

    CAS  PubMed  Google Scholar 

  175. Whitelaw NC, Whitelaw E (2006) How lifetimes shape epigenotype within and across generations. Hum Mol Genet 15(Spec No 2):R131–R137

    Article  CAS  PubMed  Google Scholar 

  176. Widschwendter M, Fiegl H, Egle D, Mueller-Holzner E, Spizzo G et al (2007) Epigenetic stem cell signature in cancer. Nat Genet 39:157–158

    Article  CAS  PubMed  Google Scholar 

  177. Wong AH, Gottesman II, Petronis A (2005) Phenotypic differences in genetically identical organisms: the epige-netic perspective. Hum Mol Genet 14(Spec No 1):R11–R18

    Article  CAS  PubMed  Google Scholar 

  178. Wood AJ, Oakey RJ (2006) Genomic imprinting in mammals: emerging themes and established theories. PLoS Genet 2:e147

    Article  PubMed  CAS  Google Scholar 

  179. Wu H, Chen Y, Liang J, Shi B, Wu G et al (2005) Hypomethylation-linked activation of PAX2 mediates tamoxifen-stimulated endometrial carcinogenesis. Nature 438:981–987

    Article  CAS  PubMed  Google Scholar 

  180. Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N et al (1999) Chromosome instability and immunodefi-ciency syndrome caused by mutations in a DNA methyl-transferase gene. Nature 402:187–191

    Article  CAS  PubMed  Google Scholar 

  181. Yan PS, Chen CM, Shi HD, Rahmatpanah F, Wei SH et al (2001) Dissecting complex epigenetic alterations in breast cancer using CpG island microarrays. Cancer Res 61:8375–8380

    CAS  PubMed  Google Scholar 

  182. Yan PS, Wei SH, Huang TH (2004) Methylation-specific oligonucleotide microarray. Methods Mol Biol 287:251–260

    CAS  PubMed  Google Scholar 

  183. Yi P, Melnyk S, Pogribna M, Pogribny IP, Hine RJ et al (2000) Increase in plasma homocysteine associated with parallel increases in plasma S-adenosylhomocysteine and lymphocyte DNA hypomethylation. J Biol Chem 275:29318–29323

    Article  CAS  PubMed  Google Scholar 

  184. Yoshikawa H, de la Monte S, Nagai H, Wands JR, Matsubara K et al (1996) Chromosomal assignment of human genomic NotI restriction fragments in a two-dimensional electrophoresis profile. Genomics 31:28–35

    Article  CAS  PubMed  Google Scholar 

  185. Zardo G, Tiirikainen MIA, Hong C, Misra A, Feuerstein BG et al (2002) Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet 32:453–458

    Article  CAS  PubMed  Google Scholar 

  186. Zhang X, Yazaki J, Sundaresan A, Cokus S, Chan SW et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201

    Article  CAS  PubMed  Google Scholar 

  187. Zilberman D, Gehring M, Tran RK, Ballinger T, Henikoff S (2007) Genome-wide analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence between methylation and transcription. Nat Genet 39:61–69

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Brena, R.M., Costello, J.F. (2010). The Role of the Epigenome in Human Cancers. In: Speicher, M.R., Motulsky, A.G., Antonarakis, S.E. (eds) Vogel and Motulsky's Human Genetics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37654-5_17

Download citation

Publish with us

Policies and ethics