Skip to main content

Searching for linear codes with large minimum distance

  • Chapter
Discovering Mathematics with Magma

Part of the book series: Algorithms and Computation in Mathematics ((AACIM,volume 19))

Abstract

There are many tables which summarise bounds on the parameters of error-correcting codes. We are undertaking a project to find constructions for codes with large minimum distance. In the course of the project, many algorithms to construct and search for good codes have been devised, and some are presented here. In particular, a very efficient algorithm for computing the minimum distance of a code has been developed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1. W. O. Alltop, A Method for Extending Binary Linear Codes, IEEE Transactions on Information Theory 30 (1984), 871–872.

    Article  Google Scholar 

  2. 2. A. Betten, H. Fripertinger, A. Kerber, A. Wassermann, K.-H. Zimmermann, Codierungstheorie: Konstruktionen und Anwendungen linearer Codes, Berlin: Springer, 1998.

    Google Scholar 

  3. 3. Wieb Bosma, John Cannon, Catherine Playoust, The Magma algebra system I: The user language, J. Symbolic Comput. 24 (1997), 235–265. See also the Magma home page at http://magma.maths.usyd.edu.au/magma/.

    Article  MATH  Google Scholar 

  4. 4. A. E. Brouwer, Bounds on the Size of Linear Codes, in: V. S. Pless, W. C. Hu.-man (eds), Handbook of Coding Theory, Amsterdam: Elsevier, 1998, pp. 295–461. On-line version at http://www.win.tue.nl/~aeb/voorlincod.html.

    Google Scholar 

  5. 5. J. Cannon, A. Steel, G. White, Linear Codes over Finite Fields, Chapter 115 in: John Cannon, Wieb Bosma (eds.), Handbook of Magma Functions, Version 2.11, Volume 8, Sydney, 2004, pp. 3521–3596.

    Google Scholar 

  6. 6. C.-L. Chen, Computer Results on the Minimum Distance of Some Binary Cyclic Codes, IEEE Transactions on Information Theory 16 (1970), 359–360.

    Article  Google Scholar 

  7. 7. M. Grassl, New Binary Codes from a Chain of Cyclic Codes, IEEE Transactions on Information Theory 47 (2001), 1178–1181.

    Article  MATH  Google Scholar 

  8. 8. R. W. Hamming, Error detecting and error correcting codes, The Bell System Technical Journal 29 (1950), 147–160.

    Google Scholar 

  9. 9. F.P. Kschischang, S. Pasupathy, Some Ternary and Quaternary Codes and Associated Sphere Packings, IEEE Transactions on Information Theory 38 (1992), 227–246.

    Article  Google Scholar 

  10. 10. F. J. MacWilliams, N. J. A. Sloane, The Theory of Error-Correcting Codes, Amsterdam: North-Holland, 1977.

    MATH  Google Scholar 

  11. 11. C. E. Shannon, A mathematical theory of communication, Bell System Technical Journal 27 (1948), 379–423 and 623–656.

    Google Scholar 

  12. 12. N. J. A. Sloane, S. M. Reddy, C.-L. Chen, New Binary Codes, IEEE Transactions on Information Theory 18 (1972), 503–510.

    Article  MATH  Google Scholar 

  13. 13. M. A. Tsfasman, S. G. Vladut, T. Zink, Modular curves, Shimura curves, and Goppa codes, better than Varshamov-Gilbert bound, Mathematische Nachrichten 109 (1982), 21–28.

    Article  MATH  Google Scholar 

  14. 14. A. Vardy, The Intractability of Computing the Minimum Distance of a Code, IEEE Transactions on Information Theory 43 (1997), 1757–1773.

    Article  MATH  Google Scholar 

  15. 15. K.-H. Zimmermann, Integral Hecke Modules, Integral Generalized Reed-Muller Codes, and Linear Codes, Tech. Rep. 3-96, Technische Universität Hamburg-Harburg, 1996.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this chapter

Cite this chapter

Grassl, M. (2006). Searching for linear codes with large minimum distance. In: Bosma, W., Cannon, J. (eds) Discovering Mathematics with Magma. Algorithms and Computation in Mathematics, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-37634-7_13

Download citation

Publish with us

Policies and ethics