Skip to main content

Higher-order Pseudoconvex Functions

  • Conference paper
Generalized Convexity and Related Topics

Part of the book series: Lecture Notes in Economics and Mathematical Systems ((LNE,volume 583))

Summary

In terms of n-th order Dini directional derivative with n positive integer we define n-pseudoconvex functions being a generalization of the usual pseudoconvex functions. Again with the n-th order Dini derivative we define n-stationary points, and prove that a point x 0 is a global minimizer of a n-pseudoconvex function f if and only if x 0 is a n-stationary point of f. Our main result is the following. A radially continuous function f defined on a radially open convex set in a real linear space is n-pseudoconvex if and only if f is quasiconvex function and any n-stationary point is a global minimizer. This statement generalizes the results of Crouzeix, Ferland, Math. Program. 23 (1982), 193–205, and Komlósi, Math. Program. 26 (1983), 232–237. We study also other aspects of the n-pseudoconvex functions, for instance their relations to variational inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aussel D (1998) Subdifferential properties of quasiconvex and pseudoconvex functions: Unified approach. J. Optim. Theory Appl. 97:29–45

    Article  MATH  MathSciNet  Google Scholar 

  2. Avriel M (1972) r-convex functions. Math. Program. 2:309–323

    Article  MATH  MathSciNet  Google Scholar 

  3. Crespi GP, Ginchev I, Rocca M (2004) Minty variational inequalities, increase along rays property and optimization. J. Optim. Theory Appl. 123:479–496

    Article  MATH  MathSciNet  Google Scholar 

  4. Crouzeix JP (1998) Characterizations of generalized convexity and generalized monotonicity, a survey. In: Crouzeix JP et al (eds) Generalized convexity, generalized monotonicity: recent results. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  5. Crouzeix JP, Ferland JA (1982) Criteria for quasi-convexity and pseudoconvexity: relations and comparisons. Math. Program. 23:193–205

    Article  MATH  MathSciNet  Google Scholar 

  6. Diewert WE (1981) Alternative characterizations of six kind of quasiconvexity in the nondifferentiable case with applications to nonsmooth programming. In: Schaible S, Ziemba WT (eds) Generalized Concavity in Optimization and Economics. Academic Press, New York

    Google Scholar 

  7. Ginchev I (2002) Higher order optimality conditions in nonsmooth optimization. Optimization 51:42–72

    Article  MathSciNet  Google Scholar 

  8. Giorgi G (1990) A note on the relationships between convexity and invexity. J. Austral. Math. Soc. Ser. B 32:97–99

    Article  MATH  MathSciNet  Google Scholar 

  9. Giorgi G, Komlósi S (1992) Dini derivatives in optimization-part 2. Riv. Mat. Sci. Econ. Soc. 15:3–24

    MATH  Google Scholar 

  10. Ivanov VI (2001) First-order characterizations of pseudoconvex functions. Serdica Math. J. 27:203–218

    MATH  MathSciNet  Google Scholar 

  11. Karamardian S (1967) Strictly quasiconvex (concave) functions and duality in mathematical programming. J. Math. Anal. Appl. 20:344–358

    Article  MATH  MathSciNet  Google Scholar 

  12. Komlósi S (1983) Some properties of nondifferentiable pseudoconvex functions. Math. Program. 26:232–237

    MATH  Google Scholar 

  13. Mangasarian OL (1965) Pseudo-convex functions. SIAM J. Control 3:281–290

    Article  MATH  MathSciNet  Google Scholar 

  14. Mangasarian OL (1994) Nonlinear programming. SIAM, Philadelphia PA

    Google Scholar 

  15. Tanaka Y (1990) Note on generalized convex functions. J. Optim. Theory Appl. 66:345–349

    Article  MATH  MathSciNet  Google Scholar 

  16. Tuy H (1964) Sur les inégalités linéaires. Colloq. Math. 13:107–123

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ginchev, I., Ivanov, V.I. (2007). Higher-order Pseudoconvex Functions. In: Generalized Convexity and Related Topics. Lecture Notes in Economics and Mathematical Systems, vol 583. Springer, Berlin, Heidelberg . https://doi.org/10.1007/978-3-540-37007-9_14

Download citation

Publish with us

Policies and ethics