Skip to main content

Tomato

  • Chapter

Part of the book series: Genome Mapping and Molecular Breeding in Plants ((GENMAPP,volume 5))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agius F, Gonzalez-Lamothe R, Caballero JL, Munoz-Blanco J, Botella MA, Valpuesta V (2003) Engineering increased vitamin Clevels implants by over expression of a D-galacturonic acid reductase. Nat Biotechnol 21:177–181

    Article  PubMed  CAS  Google Scholar 

  • Agrama HA, Scott JW (2006) Quantitative trait loci for Tomato yellow leaf curl virus and Tomato mottle virus resistance in tomato. J Am Soc Hort Sci 131:267–272

    CAS  Google Scholar 

  • Alba R, Fei ZJ, Payton P, Liu Y, Moore SL, Debbie P, Cohn J, D’Ascenzo M, Gordon JS, Rose JKC, Martin G, Tanksley SD, Bouzayen M, Jahn MM, Giovannoni J (2004) ESTs, cDNA microarrays, and gene expression profiling: tools for dissecting plant physiology and development. Plant J 39:697–714

    Article  PubMed  CAS  Google Scholar 

  • Alba R, Payton P, Fei ZJ, McQuinn R, Debbie P, Martin GB, Tanksley SD, Giovannoni JJ (2005) Transcriptome and selected metabolite analyses reveal multiple points of ethylene control during tomato fruit development. Plant Cell 17:2954–2965

    Article  PubMed  CAS  Google Scholar 

  • Alexander LJ (1963) Transfer of a dominant type of resistance to the four known Ohio pathogenic strains of Tobacco mosaic virus (TMV), fromLycopersicon peruvianum to L. esculentum. Phytopathology 53:869

    Google Scholar 

  • Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, Gadrinab C, Heller C, Jeske A, Koesema E, Meyers CC, Parker H, Prednis L, Ansari Y, Choy N, Deen H, Geralt M, Hazari N, Hom E, Karnes M, Mulholland C, Ndubaku R, Schmidt I, Guzman P, Aguilar-Henonin L, Schmid M, Weigel D, Carter DE, Marchand T, Risseeuw E, Brogden D, Zeko A, Crosby WL, Berry CC, Ecker JR (2003) Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301:653–657

    Article  PubMed  Google Scholar 

  • Alpert K, Grandillo S, Tanksley SD (1995) fw2.2: a major QTL controlling fruit weight is common to both red-and green-fruited tomato species. Theor Appl Genet 91:994–1000

    Article  Google Scholar 

  • Alpert K, Tanksley S (1996) High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato. Proc Natl Acad Sci USA 93:15503–15507

    Article  PubMed  CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Alvarez AE, van de Wiel CCM, Smulders MJM, Vosman B (2001) Use of microsatellites to evaluate genetic diversity and species relationships in the genus Lycopersicon. Theor Appl Genet 103:1283–1292

    Article  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Anderson JW (1990) Dietary fiber and human health. HortScience 25:1488–1495

    Google Scholar 

  • Andrus CF, Reynard GB, Jorgensen H, Eades J (1942) Collar rot resistance in tomatoes. J Agric Res 65:339–346

    Google Scholar 

  • Anfoka GH, Abhary M, Stevens MR (2006) Occurrence of Tomato spotted wilt virus (TSWV) in Jordan. EPPO Bull 36:517–522

    Article  Google Scholar 

  • Arens P, Odinot P, van Heusden AW, Lindhout P, Vosman B (1995) GATA-repeats and GACA-repeats are not evenly distributed throughout the tomato genome. Genome 38:84–90

    PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal M (1999) Long tomato microsatellites are predominantly associated with centromeric regions. Genome 42:536–544

    Article  PubMed  CAS  Google Scholar 

  • Areshchenkova T, Ganal MW (2002) Comparative analysis of polymorphism and chromosomal location of tomato microsatellite markers isolated from different sources. Theor Appl Genet 104:229–235

    Article  PubMed  CAS  Google Scholar 

  • Arumuganathan K, Earle E (1991) Estimation of nuclear DNA content of plants by flow cytometry. Plant Mol Biol Rep 9:208–218

    CAS  Google Scholar 

  • Ascenzi R, Gantt JS (1997) A drought-stress-inducible histone gene in Arabidopsis thaliana is a member of a distinct class of plant linker histone variants. Plant Mol Biol 34:629–641

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi R, Gantt JS (1999a) Molecular genetic analysis of the drought-inducible linker histone variant in Arabidopsis thaliana. Plant Mol Biol 41:159–169

    Article  PubMed  CAS  Google Scholar 

  • Ascenzi R, Gantt JS (1999b) Subnuclear distribution of the entire complement of linker histone variants in Arabidopsis thaliana. Chromosoma 108:345–355

    Article  PubMed  CAS  Google Scholar 

  • Ashikari M, Matsuoka M (2006) Identification, isolation and pyramiding of quantitative trait loci for rice breeding. Trends Plant Sci 11(7):344–350

    Article  PubMed  CAS  Google Scholar 

  • Astua-Monge G, Minsavage GV, Stall RE, Vallejos E, Davis MJ, Jones JB (2000) Xv4-vrxv4: A new gene-for-gene interaction identified between Xanthomonas campestris pv. vesicatoria race T3 and the wild tomato relative Lycopersicon pennellii. Mol Plant-Micr Interact 13:1346–1355

    Article  CAS  Google Scholar 

  • Azanza F, Young TE, Kim D, Tanksley SD, Juvik JA (1994) Characterization of the effects of introgressed segments of chromosome 7 and 10 from Lycopersicon chmielewskii on tomato soluble solids, pH and yield. Theor Appl Genet 87:965–972

    Article  CAS  Google Scholar 

  • Bai Y, Feng X, van der Hulst R, Lindhout P (2004) A set of simple PCR markers converted from sequence specific RFLP markers on tomato chromosomes 9 to 12. Mol Breed 13:281–287

    Article  CAS  Google Scholar 

  • Bai Y, Huang CC, van der Hulst R, Meijer-Dekens F, Bonnema G, Lindhout P (2003) QTLS for tomato powdery mildew resistance (Oidium lycopersici) in Lycopersicon parviflorum G1.1601 co-localize with two qualitative powdery mildew resistance genes. Mol Plant-Micr Interact 16:169–176

    Article  CAS  Google Scholar 

  • Bai Y, van der Hulst R, Huang CC, Wei L, Stam P, and Lindhout P (2004) Mapping Ol-4, a gene conferring resistance to Oidium neolycopersici and originating from Lycopersicon peruvianum LA2172, requires multi-allelic, single-locus markers. Theor Appl Genet 109:1215–1223

    Article  PubMed  CAS  Google Scholar 

  • Baker LR, Tomes ML (1964) Carotenoids and chlorophylls in two tomato mutants and their hybrids. Proc Am Soc Hort Sci 85:507–513

    CAS  Google Scholar 

  • Balint-Kurti PJ, Dixon JS, Jones DA, Norcott KA, Jones JDG (1994) RFLP linkage analysis of the Cf-4 and CF-9 genes for resistance to Cladosporium fulvum in tomato. Theor Appl Genet 88:691–700

    Article  CAS  Google Scholar 

  • Ballvora A, Schornack S, Baker BJ (2001) Chromosome landing at the tomato Bs4 locus. Mol Genet Genom 266:639–645

    Article  CAS  Google Scholar 

  • Barksdale TH (1972) Resistance in tomato to six anthracnose fungi. Phytopathology 62:660–663

    Google Scholar 

  • Barrero LS, Tanksley SD (2004) Evaluating the genetic basis of multiple-locule fruit in a broad cross section of tomato cultivars. Theor Appl Genet 109:669–679

    Article  PubMed  CAS  Google Scholar 

  • Barry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni J (2005) Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol 138:267–275

    Article  PubMed  CAS  Google Scholar 

  • Bartholomew DM, Bartley GE, Scolnik PA (1991) Abscisic acid control of rbcS and cab transcription in tomato leaves. Plant Physiol 96:291–296

    PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1993) cDNA cloning, expression during development, and genome mapping of PSY2, a second tomato gene encoding phytoene synthase. J Biol Chem 268:25718–25721

    PubMed  CAS  Google Scholar 

  • Bartley GE, Scolnik PA (1994) Molecular biology of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 45:287–301

    Article  CAS  Google Scholar 

  • Baudry E, Kerdelhue C, Innan H, Stephan W (2001) Species and recombination effects on DNA variability in the tomato genus. Genetics 158:1725–1735

    PubMed  CAS  Google Scholar 

  • Bauhin C (1623) Pinax theatri botanici. Ludovici Regis, pp 522

    Google Scholar 

  • Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604

    Article  PubMed  CAS  Google Scholar 

  • Beecher GR (1998) Nutrient content of tomatoes and tomato products. Proc Soc Exp Biol Med 218:98–100

    PubMed  CAS  Google Scholar 

  • Behare J, Laterrot H, Sarfatti M, Zamir D (1991) Restriction fragment length polymorphism mapping of the Stemphylium resistance gene in tomato. Mol Plant-Micr Interact 4(5):489–492

    CAS  Google Scholar 

  • Behki RM, Leslley SM (1976) In vitro plant regeneration from leaf explants of Lycopersicon esculentum (tomato). Can J Bot 54:2409–2414

    CAS  Google Scholar 

  • Ben Chaim A, Grube RC, Lapidot M, Jahn M, Paran I (2001) Identification of quantitative trait loci associated with resistance to cucumber mosaic virus in Capsicum annuum. Theor Appl Genet 102:1213–1220

    Article  CAS  Google Scholar 

  • Ben Chaim A, Borovsky Y, De Jong W, Paran I (2003) Linkage of the A locus for the presence of anthocyanin and fs10.1, a major fruit-shape QTL in pepper. Theor Appl Genet 106:889–894

    Google Scholar 

  • Ben Chaim A, Borovsky Y, Falise M, Mazourek M, Kang BC, Paran I, Jahn M (2006) QTL analysis for capsaicinoid content in Capsicum. Theor Appl Genet 113:1481–1490

    Article  PubMed  CAS  Google Scholar 

  • Berlinger MJ (1986) Pests. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Kluwer Academic Press, London, pp 391–441

    Google Scholar 

  • Bernacchi D, Beck-Bunn T, Emmatty D, Eshed Y, Inai S, Lopez J, Petiard V, Sayama H, Uhlig J, Zamir D, Tanksley S (1998a) Advanced backcross QTL analysis of tomato. II. Evaluation of near-isogenic lines carrying single-donor introgressions for desirable wild QTL-alleles derived from Lycopersicon hirsutum and L. pimpinellifolium. Theor Appl Genet 97:170–180, erratum 1191–1196

    Article  CAS  Google Scholar 

  • Bernacchi D, Beck-Bunn T, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley S (1998b) Advanced backcros s QTL analysis in tomato. I. Identification of QTLs for traits of agronomic importance from Lycopersiconhirsutum. Theor Appl Genet 97:381–397

    Article  CAS  Google Scholar 

  • Bernacchi D, Tanksley SD (1997) An interspecific backcross of Lycopersicon esculentum × L. hirsutum linkage analysis and a QTL study of sexual compatibility factors and floral traits. Genetics 147:861–877

    PubMed  CAS  Google Scholar 

  • Bernatzky R, Tanksley SD (1986) Towards a saturated linkage map in tomato based on isozymes and random cDNA sequences. Genetics 112:887–898

    PubMed  CAS  Google Scholar 

  • Berry CS, McQuinn RP, Thompson AJ, Seymour GB, Grierson D, Giovannoni J (2005) Ethylene insensitivity conferred by the Green-ripe and Never-ripe 2 ripening mutants of tomato. Plant Physiol 138:267–275

    Article  CAS  Google Scholar 

  • Berry SZ, Oaks GL (1987) Inheritance of resistance to fusarium crown and root rot in tomato. HortScience 22:110–111

    Google Scholar 

  • Bindler G, van der Hoeven R, Gunduz I, Plieske J, Ganal M, Rossi L, Gadani F, Donini P (2007) A microsatellite marker based linkage map of tobacco. Theor Appl Genet 114:341–349

    Article  PubMed  CAS  Google Scholar 

  • Bino RJ, Ric de Vos CH, Lieberman M, Hall RD, Bovy A, Jonker HH, Tikunov Y, Lommen A, Moco S, Levin I (2005) The light-hyperresponsive high pigment-2 dg mutation of tomato: alterations in the fruit metabolome. New Phytol 166:427–438

    Article  PubMed  CAS  Google Scholar 

  • Black LL, Wang TC, Hanson, PM, Chen JT (1996) Late blight resistance in four wild tomato accessions: effectiveness in diverse locations and inheritance of resistance. Phytopathology 86:S24

    Google Scholar 

  • Blauth SL, Churchill GA, Mutschler MA (1998) Identification of quantitative trait loci associated with acylsugar accumulation using intraspecific populations of the wild tomato, Lycopersicon pennellii. Theor Appl Genet 96:458–467

    Article  CAS  Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruits, vegetable, and cancer prevention: A review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  PubMed  CAS  Google Scholar 

  • Bohn GW, Tucker CM (1939) Immunity to fusarium wilt in the tomato. Science 89:603–604

    Article  PubMed  CAS  Google Scholar 

  • Bohn GW, Tucker CM (1940) Studies on fusarium wilt of the tomato. I. Immunity in Lycopersicon pimpinellifolium Mill. and its inheritance in hybrids. Mo Agric Exp Stn Res Bull 311, pp 82

    Google Scholar 

  • Bohs L (2005) Major clades in Solanum based on ndhF sequences. In: Keating RC, Hollowell VC, Croat T (eds) Festschrift for William G. Darcy: the legacy of a taxonomist (Monographs in Systematic Botany 104). Missouri: MBG Press, pp 27–49

    Google Scholar 

  • Bohs L, Olmstead RG (1997) Phylogenetic relationships in Solanum (Solanaceae) based on ndhF sequences. Syst Bot 22:5–17

    Article  Google Scholar 

  • Boileau AC, Merchen NR, Wasson K, Atkinson CA, Erdman JW (1999) Cis-lycopene is more bioavailable than trans-lycopene in vitro and in vivo in lymph-cannulated ferrets. J Nutr 129:1176–1181

    PubMed  CAS  Google Scholar 

  • Boiteux LS, Giordano L de B (1993) Genetic basis of resistance against two Tospovirus species in tomato (Lycopersicon esculentum). Euphytica 71:151–154

    Article  Google Scholar 

  • Bonas U, Conrads-Strauch J, Balbo I (1993)Resistance in tomato to Xanthomonas campestris pv. vesicatoria is determined by alleles of the pepper-specific avirulence gene avrBs3. Mol Gen Genet 238:261–269

    Google Scholar 

  • Bonde R, Murphy EF (1952) Resistance of certain tomato varieties and crosses to late blight. Maine Agric Exp Stn Bull 497:5–15

    Google Scholar 

  • Bonierbale MW, Plaisted RL, Tanksley SD (1988) RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120:1095–1103

    PubMed  CAS  Google Scholar 

  • Bonnema G, Schipper D, van Heusden S, Zabel P, Lindhout P (1997)Tomato chromosome1: High-resolution genetic and physical mapping of the short arm in an interspecific Lycopersicon esculentum × L. peruvianum cross. Mol Gen Genet 253:455–462

    Article  PubMed  CAS  Google Scholar 

  • Bournival BL, Scott JW, Vallejos CE (1989) An isozyme marker for resistance to race 3 of Fusarium oxysporum f. sp. lycopersici in tomato. Theor Appl Genet 78:489–494

    Article  Google Scholar 

  • Bournival BL, Vallejos CE, Scott JW (1990) Genetic analysis of resistances to races 1 and 2 of Fursarium oxysporum f. sp. lycopersici from the wild tomato Lycopersicon pennellii. Theor Appl Genet 79:641–645

    Article  Google Scholar 

  • Bovy A, de Vos R, Kemper M, Schijlen E, Pertejo MA, Muir S, Collins G, Robinson S, Verhoeyen M, Hughes S, Santos-Buelga C (2002) High-flavonol tomatoes resulting from the heterologous expression of the maize transcription factor genes LC and C1. Plant Cell 14:2509–2526

    Article  PubMed  CAS  Google Scholar 

  • Bradley DB (1946) Varietal and location influence on acid composition of tomato fruit. J Agric Food Chem 12:213–216

    Article  Google Scholar 

  • Bradshaw JE, Hackett CA, Meyer RC, Milbourne D, McNichol JW, Phillips MS, Waugh R (1998) Identification of AFLP and SSR markers associated with quantitative resistance to Globodera pallida (Stone) in tetraploid potato (Solanum tuberosum subsp. tuberosum) with a view to marker-assisted selection. Theor Appl Genet 97:202–210

    Article  Google Scholar 

  • Bray EA (1988) Drought-and ABA-induced changes in polypeptide and mRNA accumulation in tomato leaves. Plant Physiol 88:1210–1214

    PubMed  CAS  Google Scholar 

  • Bray EA (2002) Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana: an analysis using microarray and differential expression data. Ann Bot 89:803–811

    Article  PubMed  CAS  Google Scholar 

  • Bray EA, Shih T-Y, Moses MS, Cohen A, Imai R, Plant AL (1999) Water-deficit induction of a tomato H1 histone requires abscisic acid. Plant Growth Regul 29:35–46

    Article  CAS  Google Scholar 

  • Breto MP, Asins MJ, Carbonell EA (1993) Genetic variability in Lycopersicon species and their genetic relationships. Theor Appl Genet 86:113–120

    Article  CAS  Google Scholar 

  • Brewer MT, Lang L, Fujimura K, Dujmovic N, Gray S, van der Knaap E (2006) Development of a controlled vocabulary and software application to analyze fruit shape variation in tomato and other plant species. Plant Physiol 141:15–25

    Article  PubMed  CAS  Google Scholar 

  • Brommonschenkel SH (1996) Genetic mapping and progress towards the positional cloning of the Sw-5 Tomato spotted wilt virus (TSWV) resistance gene in tomato (Lycopersicon esculentum Mill.). Cornell Univ, Ithaca, NY, USA, Ph.D. thesis, pp 64

    Google Scholar 

  • Brommonschenkel SH, Frary A, Tanksley SD (2000) The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi. Mol Plant-Micr Interact 13:1130–1138

    Article  CAS  Google Scholar 

  • Brommonschenkel SH, Tanksley SD (1997) Map-based cloning of the tomato genomic region that spans the Sw-5 tospovirus resistance gene in tomato. Mol Gen Genet 256:121–126

    Article  PubMed  CAS  Google Scholar 

  • Broun P, Tanksley SD (1996) Characterization and genetic mapping of simple repeat sequences in the tomato genome. Mol Gen Genet 250:39–49

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, Jones ES, St Clair DA (2004) QTL analysis of quantitative resistance to Phytophthora infestans (late blight) in tomato and comparisons with potato. Genome 47:475–492

    Article  PubMed  CAS  Google Scholar 

  • Brouwer DJ, St Clair DA (2004) Fine mapping of three quantitative trait loci for late blight resistance in tomato using near isogenic lines (NILs) and sub-NILs. Theor Appl Genet 108:628–638

    Article  PubMed  CAS  Google Scholar 

  • Brunt AA (1986) Tomato mosaic virus. In: Van Regenmortel MHV, Fraenkel-Conrat H (eds) The plant viruses. Plenum Press, New York, pp 181–204

    Google Scholar 

  • Brusca JP (2003) Inheritance of tomato late blight resistance from ‘Richter’s Wild Tomato’ and evaluation of late blight combinations in adapted fresh market tomato backgrounds. MS Thesis, North Carolina State Univ, Raleigh, USA

    Google Scholar 

  • Bryan GJ, McLean K, Pande B, Purvis A, Hackett CA, Bradshaw JE, Waugh R (2004) Genetical dissection of H3-mediated polygenic PCN resistance in a heterozygous autotetraploid potato population. Mol Breed 14:105–116

    Article  CAS  Google Scholar 

  • Bucheli P, Voirol E, de la Torre R, Lopez J, Rytz A, Tanksley SD, Petiard V (1999) Definition of nonvolatile markers for flavor of tomato (Lycopersicon esculentum Mill.) as tools in selection and breeding. J Agric Food Chem 47:659–664

    Article  PubMed  CAS  Google Scholar 

  • Budiman M, Mao L, Wood T, Wing R (2000) A deep-coverage tomato BAC library and prospects toward development of an STC framework for genome sequencing. Genome Res 10:129–136

    PubMed  CAS  Google Scholar 

  • Buonaurio R, Stravato VM, Cappelli C (1996) Occurrence of Pseudomonas syringae pv. tomato race 1 in Italy on Pto gene-bearing tomato plants. J Phytopathol 144:437–440

    CAS  Google Scholar 

  • Burge J, Mickelsen O, Nicklow C, Marsh GL (1975) Vitamin C in tomatoes: comparison of tomatoes developed for mechanical or hand harvesting. Ecol Food Nutr 4:27–31

    Article  CAS  Google Scholar 

  • Burns JJ (1967) Ascorbic acid. In: Greenberg DM (ed) Metabolic pathways. 3rd edn, vol 1. Academic Press, New York, pp 394–411

    Google Scholar 

  • Caldwell DG, McCallum N, Shaw P, Muehlbauer GJ, Marshall DF, Waugh R (2004) A structured mutant population for forward and reverse genetics in Barley (Hordeum vulgare L.). Plant J 40:143–150

    Article  PubMed  CAS  Google Scholar 

  • Canady MA, Meglic V, Chetelat RT (2005) A library of Solanum lycopersicoides introgression lines in cultivated tomato. Genome 48:685–697

    Article  PubMed  CAS  Google Scholar 

  • Cannon OS, Waddoups V (1952) Loran Blood and V.R. Moscow, two new Verticillium wilt resistance tomatoes for Utah. Utah Farm Home Sci 13:74

    Google Scholar 

  • Carangal AR, Alban EK, Varner JE, Burrell RC (1954) The in-fluence of mineral nutrition on the organic acids of the tomato, Lycopersicon esculentum. Plant Physiol 29:355–360

    PubMed  CAS  Google Scholar 

  • Carmeille A, Caranta EC, Dintinger EJ, Prior P, Luisetti EJ, Besse EP (2006) Identification of QTLs for Ralstonia solanacearum race 3-phylotype II resistance in tomato. Theor Appl Genet 114(1):110–121

    Article  CAS  Google Scholar 

  • Caromel B, Mugniery D, Lefebvre V, Andrzejexski S, Ellisseche D, Kerlan MC, Rousselle P, Rousselle-Bourgeois F (2003) Mapping QTLs for resistance against Globodera pallida (Stone) Pa2/3 in a diploid potato progeny originating from Solanum spegazzinii. Theor Appl Genet 106:1517–1523

    PubMed  CAS  Google Scholar 

  • Carrari F, Baxter C, Usadel B, Urbanczyk-Wochniak E, Zanor MI, Nunes-Nesi A, Nikiforova V, Centero D, Ratzka A, Pauly M, Sweetlove LJ, Fernie AR (2006) Integrated analysis of metabolite and transcript levels reveals the metabolic shifts that underlie tomato fruit development and highlight regulatory aspects of metabolic network behaviour. Plant Physiol 142:1380–1396

    Article  PubMed  CAS  Google Scholar 

  • Carter CD, Sacalis JN, Gianfagna TJ (1989) Zingiberene and resistance to Colorado Potato Beetle in Lycopersicon hirsutum f. hirsutum. J Agric Food Chem 37:206–210

    Article  CAS  Google Scholar 

  • Carter CD, Snyder JC (1985) Mite responses in relation to trichomes of Lycopersicon esculentum × L. hirsutum F2 hybrids. Euphytica 34:177–185

    Article  Google Scholar 

  • Carter CD, Snyder JC (1986) Mite responses and trichome characters in a full-sib F2 family of Lycopersicon esculentum × L. hirsutum. J Am Soc Hort Sci 111:130–133

    Google Scholar 

  • Cato SA, Gardner RC, Kent J, Richardson TE (2001) A rapid PCR-based method for genetically mapping ESTs. Theor Appl Genet 102:296–306

    Article  CAS  Google Scholar 

  • Causse M, Buret M, Robini K, Verschave P (2003) Inheritance of nutritional and sensory quality traits in fresh market tomato and relation to consumer preferences. J Food Sci 68:2342–2350

    Article  CAS  Google Scholar 

  • Causse M, Duffe P, Gomez MC, Buret M, Damidaux R, Zamir D, Gur A, Chevalier C, Lemaire-Chamley M, Rothan C (2004) A genetic map of candidate genes and QTLs involved in tomato fruit size and composition. J Exp Bot 55:1671–1685

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lecomte L, Duffe P, Rousselle P, Buret M (2002) QTL analysis of fruit quality in fresh market tomato: a few chromosome regions control the variation of sensory and instrumental traits. J Exp Bot 53:2089–2098

    Article  PubMed  CAS  Google Scholar 

  • Causse M, Saliba-Colombani V, Lesschaeve I, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 2. Mapping QTLs for sensory attributes. Theor Appl Genet 102:273–283

    Article  CAS  Google Scholar 

  • Chagué V, Mercier JC, Guénard M, de Courcel A, Vedel F (1996) Identification and mapping on chromosome 9 of RAPD markers linked to Sw-5 in tomato by bulked segregant analysis. Theor Appl Genet 92:1045–1051

    Article  Google Scholar 

  • Chagué V, Mercier JC, Guénard M, de Courcel A, Vedel F (1997) Identification of RAPD markers linked to a locus involved in quantitative resistance to TYLCV in tomato by bulked segregant analysis. Theor Appl Genet 95:671–677

    Article  Google Scholar 

  • Chaïb J, Lecomte L, Buret M, Causse M (2006) Stability over genetic backgrounds, generations and years of quantitative trait locus (QTLs) for organoleptic quality in tomato. Theor Appl Genet 1112:934–944

    Article  PubMed  Google Scholar 

  • Chalukova M (1988) Carotenoid composition of the fruits of hybrids between Lycopersicon esculentum and some wild species of the genus Lycopersicon, IV. Progenies of lycopene and β-carotene BC1P1 hybrids of L. chmielewskii. Genet Breed 21:49–57

    CAS  Google Scholar 

  • Charlesworth D (2003) Effects of inbreeding on the genetic diversity of populations. Phil Trans Roy Soc Lond Ser B Biol Sci 358:1051–1070

    Article  CAS  Google Scholar 

  • Chen FQ, Foolad MR, Hyman J, St Clair DA, Beelman RB (1999) Mapping of QTLs for lycopene and other fruit traits in a Lycopersicon esculentum × L. pimpinellifolium cross and comparison of QTLs across tomato species. Mol Breed 5:283–299

    Article  CAS  Google Scholar 

  • Chen G, Hackett R, Walker D, Taylor A, Lin Z, Grierson D (2004) Identification of a specific isoform of tomato lipoxygenase (TomloxC) involved in the generation of fatty acid-derived flavor compounds. Plant Physiol 136:2641–2651

    Article  PubMed  CAS  Google Scholar 

  • Chen GQ, Foolad MR (1999) Amolecular linkage map of tomato based on a cross between Lycopersicon esculentum and L. pimpinellifolium and its comparison with other molecular maps of tomato. Genome 42:94–103

    Article  CAS  Google Scholar 

  • Chen R-D, Campeau N, Greer AF, Bellemare G, Tabaeizadeh Z (1993) Sequence of a novel abscisic acid-and drought-induced cDNA from wild tomato (Lycopersicon chilense). Plant Physiol 103:301

    Article  PubMed  CAS  Google Scholar 

  • Chen R-D, Tabaeizadeh Z (1992a) Alteration of gene expression in tomato plants (Lycopersicon esculentum) by drought and salt stress. Genome 35:385–391

    CAS  Google Scholar 

  • Chen R-D, Tabaeizadeh Z (1992b) Expression and molecular cloning of drought-induced genes in the wild tomato Lycopersicon chilense. Biochem Cell Biol 70:199–206

    Article  PubMed  CAS  Google Scholar 

  • Chen R-D, Yu L-X, Greer AF, Cheriti H, Tabaeizadeh Z (1994) Isolation of an osmotic stress-and abscisic acid-induced gene encoding an acidic endochitinase from Lycopersicon chilense. Mol Gen Genet 245:195–202

    Article  PubMed  CAS  Google Scholar 

  • Chetelat RT (2004) Revised list of wild species stocks. Tomato Genet Coop Rep 54:52–76

    Google Scholar 

  • Chetelat RT (2005) Revised list of monogenic stocks. Tomato Genet Coop Rep 55:48–69

    Google Scholar 

  • Chetelat RT (2006) Revised list of miscellaneous stocks. Tomato Genet Coop Rep 56:37–56

    Google Scholar 

  • Chetelat RT, De Verna JW, Bennett AB (1995) Introgression into tomato (Lycopersicon esculentum) of the L. chmielewskii sucrose accumulator gene (sucr) controlling fruit sugar composition. Theor Appl Genet 91:327–333

    CAS  Google Scholar 

  • Chetelat RT, Ji Y (2007) Cytogenetics and evolution. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2: tomato. Science Publ, Enfield, New Hampshire, USA, pp 73–108

    Google Scholar 

  • Chetelat RT, Klann E, DeVerna JW, Yelle S, Bennett AB (1993) Inheritance and genetic mapping of fruit sucrose accumulation in Lycopersicon chmielewskii. Plant J 4:643–650

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V (2000) Molecular mapping of chromosome segments introgressed from Solanum lycopersicoides into cultivated tomato (Lycopersicon esculentum). Theor Appl Genet 100:232–241

    Article  CAS  Google Scholar 

  • Chetelat RT, Meglic V, Cisneros P (2000) A genetic map of tomato based on BC(1) Lycopersicon esculentum × Solanum lycopersicoides reveals overall synteny but suppressed recombination between these homeologous genomes. Genetics 154:857–867

    PubMed  CAS  Google Scholar 

  • Chetelat RT, Rick CM, Cisneros P, Alpert KB, De Verna JW (1998) Identification, transmission, and cytological behavior of Solanum lycopersicoides Dun. monosomic alien addition lines in tomato (Lycopersicon esculentum Mill.). Genome 41:40–50

    Article  CAS  Google Scholar 

  • Childs KL, Hamilton JP, Zhu W, Ly E, Cheung F, Wu H, Rabinowicz PD, Town CD, Buell CR, Chan AP (2007) The TIGR Plant Transcript Assemblies database. Nucl Acids Res 35:D846–851

    Article  PubMed  CAS  Google Scholar 

  • Chmielewski T, Berger S (1966) Investigations on the inheritance of high concentrations of provitamin A in tomato. Hodowla Roslin Aklim Nasienn 10:385–400

    Google Scholar 

  • Chunwongse J, Bunn TB, Crossman C, Jinag J, Tanksley SD (1994) Chromosomal localization and molecular-marker tagging of the powdery mildew resistance gene (Lv) in tomato. Theor Appl Genet 89:76–79

    Article  CAS  Google Scholar 

  • Chunwongse J, Chunwongse C, Black L, Hanson P (2002) Molecular mapping of the Ph-3 gene for late blight resistance in tomato. J Hort Sci Biotechnol 77:281–286

    CAS  Google Scholar 

  • Cirulli M, Alexander LJ (1969) Influence of temperature and strain of Tobacco mosaic virus on resistance in a tomato breeding line derived from Lycopersicon peruvianum. Phytopathology 59:1287–1297

    Google Scholar 

  • Clayberg CD (1972) Preliminarymapping of three chromosome 7 genes. Tomato Genet Coop Rep 22:4

    Google Scholar 

  • Clayberg CD, Butler L, Rick CM, Young PA (1960) Second list of known genes in the tomato. J Hered 51:167–174

    Google Scholar 

  • Clinton SK (1998) Lycopene: Chemistry, biology, and implications for human health and disease. Nutr Rev 56:35–51

    PubMed  CAS  Google Scholar 

  • Clouse SD, Gilchrist DG (1987) Interaction of the asc locus in F8 paired lines of tomato with Alternaria alternata f. sp. lycopersici and AAL-toxin. Phytopathology 70:80–82

    Google Scholar 

  • Coaker GL, Francis DM (2004) Mapping, genetic effects, and epistatic interaction of two bacterial canker resistance QTLs from Lycopersicon hirsutum. Theor Appl Genet 108(6):1047–1055

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Bray EA (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182:27–33

    Article  CAS  Google Scholar 

  • Colbert T, Till BJ, Tompa R, Reynolds S, Steine MN, Yeung AT, McCallum CM, Comai L, Henikoff S (2001) High-throughput screening for induced point mutations. Plant Physiol 126:480–484

    Article  PubMed  CAS  Google Scholar 

  • Colliver S, Bovy A, Collins G, Muir S, Robinson S, de Vos CHR, Verhoeyen ME (2002) Improving the nutritional content of tomatoes through reprogramming their biosynthetic pathway. Phytochem Rev 1:113–123

    Article  CAS  Google Scholar 

  • Comai L, Henikoff S (2006) TILLING: practical single-nucleotide mutation discovery. Plant J 45:684–694

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Young K, Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Henikoff S (2004) Efficient discovery of DNA polymorphisms in natural populations by Ecotilling. Plant J 37:778–786

    Article  PubMed  CAS  Google Scholar 

  • Commenges D, Scotet V, Renaud S, Jacqmin-Gadda H, Barberger-Gateau P, Dartigues JF (2000) Intake of flavonoids and risk of dementia. Eur J Epidemiol 16:357–363

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Liu J, Tanksley SD (2002) Natural alleles at a tomato fruit size quantitative trait locus differ by heterochronic regulatory mutations. Proc Natl Acad Sci USA 99:13606–13611

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Tanksley SD (2006) FW2.2 and cell cycle control in developing tomato fruit: a possible example of gene cooption in the evolution of a novel organ. Plant Mol Biol 62:867–880

    Article  PubMed  CAS  Google Scholar 

  • Conover RA, Walter JA (1953) The occurrence of a virulent race of Phytophthora infestans on late blight resistant tomato stocks. Phytopathology 43:344–345

    Google Scholar 

  • Cook D, Grierson D, Jones C, Wallace A, West G, Tucker G (2002) Modification of fatty acid composition in tomato (Lycopersicon esculentum) by expression of a borage Δ6-desaturase. Mol Biotechnol 21:123–128

    Article  PubMed  CAS  Google Scholar 

  • Cook NC, Samman S (1996) Flavonoids — chemistry, metabolism, cardioprotective effects, and dietary sources. Nutr Biochem 7:66–76

    Article  CAS  Google Scholar 

  • Cookson PJ, Kiano JW, Shipton CA, Fraser PD, Romer S, Schuch W, Bramley PM, Pyke KA (2003) Increases in cell elongation, plastid compartment size and phytoene synthase activity underlie the phenotype of the high pigment-1 mutant of tomato. Planta 217:896–903

    Article  PubMed  CAS  Google Scholar 

  • Cordeiro G, Eliott FG, Henry RJ (2006) An optimized ecotilling protocol for polyploids or pooled samples using a capillary electrophoresis system. Anal Biochem 355:145–147

    Article  PubMed  CAS  Google Scholar 

  • Cortina C, Culiánez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169:75–82

    Article  CAS  Google Scholar 

  • Courtney WHI, Lambeth VN (1977) Glycoalkaloid content of mature green fruit Lycopersicon species. HortScience 12:550–551

    CAS  Google Scholar 

  • Cox S (2000) From discovery to modern commercialism: the complete story behind Lycopersicon esculentum. http://www.landscapeimagery.com/articles.html

    Google Scholar 

  • Cuartero J, Bolarin MC, Assins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp Bot 57:1045–1056

    Article  PubMed  CAS  Google Scholar 

  • Cui X, Xu J, Asghar R, Condamine P, Svensson JT, Wanamaker S, Stein N, Roose M, Close TJ (2005) Detecting single-feature polymorphisms using oligonucleotide arrays and robustified projection pursuit. Bioinformatics 21:3852–3858

    Article  PubMed  CAS  Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  PubMed  CAS  Google Scholar 

  • Cutler KD (1998) From wolf peach to outer space-tomato history and lore. In: Tantalizing tomatoes: smart tips and tasty picks for gardeners everywhere. 21st Century Gardening Series, Brooklyn Botanic Garden, New York

    Google Scholar 

  • Dan Y, Yan H, Munyikwa T, Dong J, Zhang Y, Armstrong CL (2006) MicroTom-a high-throughput model transformation system for functional genomics. Plant Cell Rep 25:432–441

    Article  PubMed  CAS  Google Scholar 

  • Danesh D, Aarons S, McGill GE, Young ND (1994) Genetic dissection of oligogenic resistance to bacterial wilt in tomato. Mol Plant-Micr Interact 7:464–471

    CAS  Google Scholar 

  • Darwin SC, Knapp S, Peralta IE (2003) Taxonomy of tomatoes in the Galapagos Islands: native and introduced species of Solanum section Lycopersicon (Solanaceae). Syst Biodiver 1:29–53

    Article  Google Scholar 

  • Davies JN (1964) Effect of nitrogen, phosphorous and potassium fertilizers on the non-volatile organic acids of tomato fruit. J Sci Food Agric 15:665–673

    Article  CAS  Google Scholar 

  • Davies JN (1965) The effect of variety on the malic and citric acid content of tomato fruit. Rep Glasshouse Crops Res Inst, pp 139–141

    Google Scholar 

  • Davies JN (1966a) Changes in the non-volatile organic acids of tomato fruit during ripening. J Sci Food Agric 17:396–400

    Article  PubMed  CAS  Google Scholar 

  • Davies JN (1966b) Occurrence of sucrose in the fruit of some species of Lycopersicon. Nature 209:640–641

    Article  CAS  Google Scholar 

  • Davies JN, Hobson GE (1981) The constituents of tomato fruit-The influence of environment, nutrition and genotype. Crit Rev Food Sci Nutr 15:205–280

    PubMed  CAS  Google Scholar 

  • Davuluri GR, van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Brummell DA, King SR, Palys J, Uhlig J, Bramley PM, Pennings HM, Bowler C (2005) Fruitspecific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    Article  PubMed  CAS  Google Scholar 

  • De Candolle A (1886) Origin of cultivated plants. Hafner Publishing Company, New York, pp 468 (reprint 1959)

    Google Scholar 

  • DeGiovanni C, Dell’Orco P, Bruno A, Ciccarese F, Lotti C, Ricciardi L (2004) Identification of PCR-based markers (RAPD, AFLP) linked to a novel powdery mildew resistance gene (ol-2) in tomato. Plant Sci 166:41–48

    Article  CAS  Google Scholar 

  • De Jong WS, Eannetta NT, De Jong DM, Bodis M (2004) Candidate gene analysis of anthocyanin pigmentation loci in the Solanaceae. Theor Appl Genet 108:423–432

    Article  PubMed  CAS  Google Scholar 

  • de la Garza RD, Quinlivan EP, Klaus SMJ, Basset GJC, Gregory JF, Hanson AD (2004) Folate biofortification in tomatoes by engineering the pteridine branch of folate synthesis. Proc Natl Acad Sci USA 101:13720–13725

    Article  Google Scholar 

  • de Silva J, Verhoeyen ME (1998) Production and characterization of antisense-exogalactanase tomatoes. In: Kuiper HA (ed) Report of the demonstration programme on food safety evaluation of genetically modified foods as a basis for market introduction. The Netherlands Ministry of Economic Affairs, The Hague, pp 99–106

    Google Scholar 

  • de Vicente MC, Tanksley SD (1993) QTL analysis of transgressive segregation in an interspecific tomato cross. Genetics 134:585–596

    Google Scholar 

  • Deguchi M, Bennett AB, Yamaki S, Yamada K, Kanahama K, Kanayama Y (2006) An engineered sorbitol cycle alters sugar composition, not growth, in transformed tobacco. Plant Cell Environ 29:1980–1988

    Article  PubMed  CAS  Google Scholar 

  • Denny T (2006) Plant pathogenic Ralstonia species. Gnanamanickam SS (ed) Plant-associated bacteria. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Dharmapuri S, Rosati C, Pallara P, Aquilani R, Bouvier F, Camara B, Giuliano G (2002) Metabolic engineering of xanthophyll content in tomato fruits. FEBS Lett 519:30–34

    Article  PubMed  CAS  Google Scholar 

  • Dijian-Caporalino C, Pijarowski L, Fazari A, Samson M, Gaveau L, O’Byrne C, Lefebvre V, Caranta C, Palloix A, Abad P (2001) High-resolution genetic mapping of the pepper (Capsicum annuum L.) resistance loci Me 3 and Me 4 conferring heat-stable resistance to root-knot nematodes (Meloidogyne spp.). Theor Appl Genet 103:592–600

    Article  Google Scholar 

  • Dinar M, Stevens MA (1981) The relationship between starch accumulation and soluble solids content of tomato fruits. J Am Soc Hort Sci 106:415–418

    CAS  Google Scholar 

  • Diwan N, Fluhr R, Eshed Y, Zamir D, Tanksley SD (1999) Mapping of Ve in tomato: a gene conferring resistance to the broad-spectrum pathogen, Verticillium dahliae race 1. Theor Appl Genet 98:315–319

    Article  CAS  Google Scholar 

  • Doganlar S, Dodson J, Gabor B, Beck-Bunn T, Crossman C, Tanksley SD (1998) Molecular mapping of the py-1 gene for resistance to corky root rot (Pyrenochaeta lycopersici) in tomato. Theor Appl Genet 97:784–788

    Article  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD (2002a) Comparative genetic linkage map of eggplant (Solanum melongena) and its implications for genome evolution in the Solanaceae. Genetics 161:1697–1711

    PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Daunay M-C, Lester RN, Tanksley SD (2002b) Conservation of gene function in the Solanaceae as revealedby comparative mapping of domestication traits in eggplant. Genetics 161:1713–1726

    PubMed  CAS  Google Scholar 

  • Doganlar S, Frary A, Ku H-K, Tanksley SD (2002c) Mapping quantitative trait loci in inbred backcross lines of Lycopersicon pimpinellifolium (LA1589). Genome 45:1189–1202

    Article  PubMed  CAS  Google Scholar 

  • Doll R (1990) Symposium on diet and cancer. An overview of the epidemiological evidence linking diet and cancer. Proc Nutr Soc 49:119–131

    Article  PubMed  CAS  Google Scholar 

  • Dorais M, Papadopoulos AP, Gosselin A (2001) Greenhouse tomato fruit quality. Hort Rev 26:239–319

    CAS  Google Scholar 

  • Ecole CC, Picanç M, Jham GN, Guedes RNC (1999) Variability in Lycopersicon hirsutum f. typicum and possible compounds involved in its resistance to Tuta absoluta. Agric For Entomol 1:249–254

    Article  Google Scholar 

  • Eduardo I, Arús P, Monforte AJ (2005) Development of a genomic library of near isogenic lines (NILs) in melon (Cucumis melo L.) from the exotic accession PI161375. Theor Appl Genet 112:139–148

    Article  PubMed  CAS  Google Scholar 

  • Egashira H, Ishihara H, Takashina T, Imanishi S (2000) Genetic diversity of the ‘peruvianum-complex’ (Lycopersicon peruvianum (L.) Mill. and L. chilense Dun.) revealed by RAPD analysis. Euphytica 116:23–31

    Article  CAS  Google Scholar 

  • Eigenbrode SD, Trumble JT (1993a) Antibiosis to beet armyworm (Spodoptera exigua) in Lycopersicon accessions. HortScience 28:932–934

    Google Scholar 

  • Eigenbrode SD, Trumble JT (1993b) Resistance to beet armyworm, hemipterans, and Liriomyzia spp. in Lycopersicon accessions. J Am Soc Hort Sci 118:525–530

    Google Scholar 

  • Eigenbrode SD, Trumble JT, Millar JG, White KK (1994) Topical toxicity of tomato sesquiterpenes to the beet armyworm and the role of these compounds in resistance derived from an accession of Lycopersicon hirsutum f. typicum. J Agric Food Chem 42:807–810

    Article  CAS  Google Scholar 

  • El-Din El-Assal S, Alonso-Blanco C, Peeters AJM, Koornneef M (2001) A QTL for flowering time in Arabidopsis reveals a novel allele of CRY2. Nat Genet 29:435–440

    Article  PubMed  CAS  Google Scholar 

  • Ellinger S, Ellinger J, Stehle P (2006) Tomatoes, tomato products and lycopene in the prevention of prostrate cancer: do we have the evidence from intervention studies? Curr Opin Clin Nutr Metab Care 6:722–727

    Google Scholar 

  • Ellul P, Garcia-Sogo B, Pineda B, Ríos G, Roig LA, Moreno V (2003) The ploidy level of transgenic plants in Agrobacterium-mediated transformation of tomato cotyledons (Lycopersicon esculentum L. Mill.) is genotype and procedure dependent. Theor Appl Genet 106:231–238

    PubMed  CAS  Google Scholar 

  • Enright AJ, Van Dongen S, Ouzounis CA (2002) An efficient algorithm for large-scale detection of protein families. Nucl Acids Res 30:1575–1584

    Article  PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1994a) A genomic library of Lycopersicon pennellii in Lycopersicon esculentum — a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1994b) Introgressions from Lycopersicon pennellii can improve the soluble-solids yield of tomato hybrids. Theor Appl Genet 88:891–897

    Article  CAS  Google Scholar 

  • Eshed Y, Zamir D (1995) An introgression line population of Lycopersicon pennellii in the cultivated tomato enables the identification and fine mapping of yield associated QTL. Genetics 141:1147–1162

    PubMed  CAS  Google Scholar 

  • Eshed Y, Zamir D (1996) Less-than-additive epistatic interactions of quantitative trait loci in tomato. Genetics 143:1807–1817

    PubMed  CAS  Google Scholar 

  • FAOSTAT (2004) Food and Agriculture Organization of the United Nations Statistical Databases. http://faostat.fao.org/

    Google Scholar 

  • Fargette D, Leslie M, Harrison BD (1996) Serological studies on the accumulation and localisation of three Tomato leaf curl geminiviruses in resistant and susceptible Lycopersicon species and tomato cultivars. Ann Appl Biol 128:317–328

    Google Scholar 

  • Fauquet CM, Bisaro DM, Briddon RW, Brown JK, Harrison BD, Rybicki EP, Stenger DC, Stanley J (2003) Revision of taxonomic criteria for species demarcation in the family Geminiviridae, and an updated list of Begomovirus species. Arch Virol 148:405–421

    Article  PubMed  CAS  Google Scholar 

  • Faurobert M, Mihr C, Bertin N, Pawłowski T, Negroni L, Sommerer N, Causse M (2007) Major proteome variations associated with cherry tomato pericarp development and ripening. Plant Physiol 143:1327–1346

    Article  PubMed  CAS  Google Scholar 

  • Faurobert M, Barre M, Chaïb J, Causse M (2006) Effect of quality QTL introgression on tomato fruit proteome. PAA/Solanaceae Conference, July 23–27, Univ of Wisconsin, Madison, USA

    Google Scholar 

  • Fei Z, Tang X, Alba R, Giovannoni J (2006) Tomato Expression Database (TED): a suite of data presentation and analysis tools. Nucl Acids Res 34:D766–770

    Article  PubMed  CAS  Google Scholar 

  • Fei ZJ, Tang X, Alba RM, White JA, Ronning CM, Martin GB, Tanksley SD, Giovannoni JJ (2004) Comprehensive EST analysis of tomato and comparative genomics of fruit ripening. Plant J 40:47–59

    Article  PubMed  Google Scholar 

  • Fellner M, Sawhney VK (2001) Seed germination in a tomato male-sterile mutant is resistant to osmotic, salt and low-temperature stresses. Theor Appl Genet 102:215–221

    Article  CAS  Google Scholar 

  • Fery RL, Kennedy GG (1987) Genetic analysis of 2-tridecanone concentration, leaf trichome characteristics and tobacco hornworm resistance in tomato. J Am Soc Hort Sci 112:886–891

    CAS  Google Scholar 

  • Fiehn O, Wohlgemuth G, Scholz M (2005) Setup and annotation of metabolomic experiments by integrating biological and mass spectrometric metadata. In: Ludascher B, Raschid L (eds) Data Integration in the Life Sciences. Springer, Berlin Heidelberg New York, pp 224–239

    Google Scholar 

  • Fillatti JJ, Kiser J, Rose R, Comai L (1987) Efficient transfer of a glyphosate tolerance gene into tomato using a binary Agrobacterium tumefaciens vector. Bio/Technology 5:726–730

    Article  CAS  Google Scholar 

  • Finetti-Sialer M, Di Franco A, Papanice MA, Gallitelli D (1997) Tomato necrotic yellows induced by a novel strain of Alfalfa mosaic virus. J Plant Pathol 79:115–120

    Google Scholar 

  • Finkers R, van Heusden AW, Meijer-Dekens F, van Kan JAL, Maris P, Lindhout P (2007) The construction of a Solanum habrochaites LYC4 introgression line population and the identification of QTLs for resistance to Botrytis cinerea. Theor Appl Genet 114:1071–1080

    Article  PubMed  Google Scholar 

  • Finlay KW (1953) Inheritance of spotted wilt resistance in the tomato. II. Five genes controlling spotted wilt resistance in four tomato types. Aust J Biol Sci 6:153–163

    PubMed  CAS  Google Scholar 

  • Fischhoff DA, Bowdish KS, Perlak FJ, Marrone PG, Mc-Cormick SM, Niedermeyer JG, Dean DE, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Bio/Technology 5:807–813

    Article  CAS  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  PubMed  CAS  Google Scholar 

  • Fobes JF (1980) Trisomic analysis of isozymic loci in tomato species — segregation and dosage effects. Biochem Genet 18:401–421

    Article  PubMed  CAS  Google Scholar 

  • Fobes JF, Mudd JB, Marsden MPF (1985) Epicuticular lipid accumulation on the leaves of Lycopersicon pennellii (Corr.) D’Arcy and Lycopersicon esculentum Mill. Plant Physiol 77:567–570

    PubMed  CAS  Google Scholar 

  • Folkertsma RT, Spassova MI, Prins M, Stevens MR, Hille J, Goldbach RW (1999) Construction of a bacterial artificial chromosome (BAC) library of Lycopersicon esculentum cv. Stevens and its application to physically map the Sw-5 locus. Mol Breed 5:197–207

    Google Scholar 

  • Foolad MR (1999) Comparison of salt tolerance during seed germination and vegetative growth in tomato by QTL mapping. Genome 42:727–734

    Article  CAS  Google Scholar 

  • Foolad MR (2004) Recent advances in genetics of salt tolerance in tomato. Plant Cell Tiss Org Cult 76:101–119

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ (1999) RFLP mapping of QTLs conferring salt tolerance during the vegetative stage in tomato. Theor Appl Genet 99:235–243

    Article  CAS  Google Scholar 

  • Foolad MR, Chen FQ, Lin GY (1998) RFLP mapping of QTLs conferring salt tolerance during germination in an interspecific cross of tomato. Theor Appl Genet 97:1133–1144

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY (1997) Absence of a genetic relationship between salt tolerance during seed germination and vegetative growth in tomato. Plant Breed 116:363–367

    Article  CAS  Google Scholar 

  • Foolad MR, Lin GY (1999)Relationships between cold-and salt-tolerance during seed germination in tomato: germplasm evaluation. Plant Breed 118:45–48

    Article  CAS  Google Scholar 

  • Foolad MR, Ntahimpera N, Christ BJ (2000) Comparison of field, greenhouse and detached-leaflet evaluations of tomato germplasm for early blight resistance. Plant Dis 84:967–972

    Article  Google Scholar 

  • Foolad MR, Sharma A (2005) Molecular markers as selection tools in tomato breeding. 1st Intl Sympon Tomato Diseases, Orlando, Florida, USA, pp 225–240

    Google Scholar 

  • Foolad MR, Stoltz T, Dervinis C, Rodriguez RL, Jones RA (1997) Mapping QTLs conferring salt tolerance during germination in tomato by selective genotyping. Mol Breed 3:269–277

    Article  CAS  Google Scholar 

  • Foolad MR, Zhang L, Khan A, Nino-Liu D, Lin GY (2002) Identification of QTLs for early blight (Alternaria solani) resistance in tomato using backcross populations of a Lycopersicon esculentum × L. hirsutum cross. Theor Appl Genet 104:945–958

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zhang LP, Kin GY (2001) Identification and validation of QTLs for salt tolerance during vegetative growth in tomato by selective genotyping. Genome 44:444–454

    Article  PubMed  CAS  Google Scholar 

  • Foolad MR, Zhang LP, Subbiah P (2003) Genetics of drought tolerance during seed germination in tomato: inheritance and QTL mapping. Genome 46:536–545

    Article  PubMed  CAS  Google Scholar 

  • França FH, Maluf WR, Ferreira-Rossi PE, Miranda JEC, Coelho MCF, Castelo-Branco M, Resende AM (1989) Breeding for resistance to Scrobipalpula absoluta (Meyrick) among Lycopersicon accessions in Brazil. In: Green SK (ed) Management Practices for Tomato and Pepper Production in the Tropics. Asian Veg Res Dev Center, Taiwan, pp 113–122

    Google Scholar 

  • Francis DM, Kabelka E, Bell J, Franchino B, St Clair D (2001) Resistance to bacterial canker in tomato (Lycopersicon hirsutum LA407) and its progeny derived from crosses to L. esculentum. Plant Dis 85:1171–1176

    Article  Google Scholar 

  • Franklin-Tong VE, Franklin FCH (2003) The different mechanisms of gametophytic self-incompatibility. Phil Trans Roy Soc Lond Ser B Biol Sci 358:1025–1032

    Article  CAS  Google Scholar 

  • Frary A, Earle ED (1996) An examination of factors affecting the efficiency of Agrobacterium-mediated transformation of tomato. Plant Cell Rep 16:235–240

    CAS  Google Scholar 

  • Frary A, Doganlar S, Daunay M-C, Tanksley SD (2003a) QTL analysis of morphological traits in eggplant and implications for conservation of gene function during evolution of Solanaceous species. Theor Appl Genet 107:359–370

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Doganlar S, Frampton A, Fulton T, Uhlig J, Yates H, Tanksley S (2003b) Fine mapping of quantitative trait loci for improved fruit characteristics from Lycopersicon chmielewskii chromosome 1. Genome 46:235–243

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Fulton TM, Zamir D, Tanksley SD (2004) Advance backcross QTL analysis of a Lycopersicon esculentum × L. pennellii cross and identification of possible orthologs in the Solanaceae. Theor Appl Genet 108:485–496

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Graham E, Jacobs J, Chetelat RT, Tanksley SD (1998) Identification of QTL for late blight resistance from L. pimpinellifolium L3708. Tomato Genet Coop Rep 48:19–21

    Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, van der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) fw-2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Presting GG, Tanksley SD (1996) Molecular mapping of the centromeres of tomato chromosomes 7 and 9. Mol Gen Genet 250:295–304

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Van Eck J (2004) Organogenesis from transformed tomato explants. In: Peña L (ed) Methods in molecular biology, vol 286. Humana Press, Totowa, NJ, USA, pp 213–221

    Google Scholar 

  • Frary A, Xu Y, Liu J, Mitchell S, Tedeschi E, Tanksley SD (2005) Development of a set of PCR-based anchor markers encompassing the tomato genome and evaluation of their usefulness for genetics and breeding experiments. Theor Appl Genet 111:291–312

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Romer S, Shipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092–1097

    Article  PubMed  CAS  Google Scholar 

  • Fraser PD, Truesdale MR, Bird CR, Schuch W, Bramley PM (1994) Carotenoid biosynthesis during tomato fruit development. Evidence for tissue-specific gene expression. Plant Physiol 105:405–413

    PubMed  CAS  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Fray RG, Wallace A, Fraser PD, Valero D, Hedden P, Bramley PM, Grierson D (1995) Constitutive expression of a fruit phytoene synthase gene in transgenic tomatoes causes dwarfism by redirecting metabolites from the gibberellin pathway. Plant J 8:693–701

    Article  CAS  Google Scholar 

  • Fray RG, Wallace A, Grierson D, Lycett GW (1994) Nucleotide sequence and expression of a ripening and water stress-related cDNA from tomato with homology to the MIP class of membrane channel proteins. Plant Mol Biol 24:539–543

    Article  PubMed  CAS  Google Scholar 

  • Freeman JA, Woodbridge CG (1960) Effect of maturation, ripening and truss position on the free amino acid content in tomato fruits. Proc Am Soc Hort Sci 76:515–523

    CAS  Google Scholar 

  • French CJ, Bouthiller M, Bernardy M, Ferguson G, Sabourin M, Johnson RC, Masters C, Godkin S, Mumford R (2001) First report of Pepino virus in Canada and the United States. Plant Dis 85:1121

    Article  Google Scholar 

  • Fridman E, Carrari F, Liu YS, Fernie AR, Zamir D (2004) Zooming in on a quantitative trait for tomato yield using interspecific introgressions. Science 305:1786–1789

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Liu YS, Carmel-Goren L, Gur A, Shoresh M, Pleban T, Eshed Y, Zamir D (2002) Two tightly linked QTLs modify tomato sugar content via different physiological pathways. Mol Genet Genom 266:821–826

    Article  CAS  Google Scholar 

  • Fridman E, Pleban T, Zamir D (2000) A recombination hotspot delimits a wild-species quantitative trait locus for tomato sugar content to 484 bp within an invertase gene. Proc Natl Acad Sci USA 97:4718–4723

    Article  PubMed  CAS  Google Scholar 

  • Fridman E, Zamir D (2003) Functional divergence of a syntenic invertase gene family in tomato, potato, and Arabidopsis. Plant Physiol 131:603–609

    Article  PubMed  CAS  Google Scholar 

  • Friedman M (2002) Tomato glycoalkaloids: Role in the plant and in the diet. J Agric Food Chem 50:5751–5780

    Article  PubMed  CAS  Google Scholar 

  • Friedman M, Brandon DL (2001) Nutritional and health bene-fits of soy proteins. J Agric Food Chem 49:1069–1086

    Article  PubMed  CAS  Google Scholar 

  • Fu DQ, Zhu BZ, Zhu HL, Jiang WB, Luo YB (2005) Virus-induced gene silencing in tomato fruit. Plant J 43:299–308

    Article  PubMed  CAS  Google Scholar 

  • Fuchs J, Kloos D, Ganal M, Schubert I (1996) In situ localization of yeast artificial chromosome sequences on tomato and potato metaphase chromosomes. Chrom Res 4:277–281

    Article  PubMed  CAS  Google Scholar 

  • Fulton TM, Beck-Bunn T, Emmatty D, Eshed Y, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (1997) QTL analysis of an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species. Theor Appl Genet 95:881–894

    Article  CAS  Google Scholar 

  • Fulton TM, Bucheli P, Voirol E, Lopez J, Petiard V, Tanksley SD (2002a) Quantitative trait loci (QTL) affecting sugars, organic acids and other biochemical properties possibly contributing to flavor, identified in four advanced backcross populations of tomato. Euphytica 127:163–177

    Article  CAS  Google Scholar 

  • Fulton TM, Grandillo S, Beck-Bunn T, Fridman E, Frampton A, Lopez J, Petiard V, Uhlig J, Zamir D, Tanksley SD (2000) Advanced backcross QTL analysis of a Lycopersicon esculentum × Lycopersicon parviflorumcross. Theor Appl Genet 100:1025–1042

    Article  CAS  Google Scholar 

  • Fulton TM, van der Hoeven R, Eanetta NT, Tanksley SD (2002b) Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell 14:1457–1467

    Article  PubMed  CAS  Google Scholar 

  • Gallegly ME (1952) Sources of resistance to two races of the tomato late blight fungus. Phytopathology 42:466

    Google Scholar 

  • Ganal M, Young N, Tanksley S (1989) Pulsed field gelelectrophoresis and physical mapping of large DNA fragments in the Tm-2a region of chromosome-9 in tomato. Mol Gen Genet 215:395–400

    Article  CAS  Google Scholar 

  • Gardner RG, Shoemaker PB (1999) ‘Mountain Supreme’ early blight-resistant hybrid tomato and its parents, NC EBR-3 and NC EBR-4 tomato breeding lines. HortScience 34:745–746

    Google Scholar 

  • Garland S, Sharman M, Persley D, McGrath D (2005) The development of an improved PCR-based marker system for Sw-5, an important TSWV resistance gene of tomato. Aust J Agric Res 56:285–289

    Article  CAS  Google Scholar 

  • Gebhardt C, Ritter E, Barone A, Debener T, Walkemeier B, Schachtschabel U, Kaufman H, Thompson RD, Bonierbale MW, Ganal MW, Tanksley SD, Salamini F (1991) RFLP maps of potato and their alignment with the homoeologous tomato genome. Theor Appl Genet 83:49–57

    Article  Google Scholar 

  • Gebhardt C, Walkemeier B, Henselewski H, Barakat A, Delseny M, Stuber K (2003) Comparative mapping between potato (Solanum tuberosum) and Arabidopsis thaliana reveals structurally conserved domains and ancient duplications in the potato genome. Plant J 34:529–541

    Article  PubMed  CAS  Google Scholar 

  • Gebre-Selassie K, Laterrot H, Marchoux G, Ragozzino A, Sacchardo F (1990) Resistance to Potato virus Y and Cucumber mosaic virus in Lycopersicon hirsutum. Tomato Genet Coop Rep 40:12–13

    Google Scholar 

  • Gentile AG, Stoner AK (1968) Resistance in Lycopersicon species to the tobacco flea beetle. J Econ Entomol 61:1347–1349

    Google Scholar 

  • Gentile AG, Webb R, Stoner AK (1968) Resistance in Lycopersicon and Solanumto greenhouse whiteflies. J Econ Entomol 61:1355–1357

    Google Scholar 

  • Gentile AG, Webb R, Stoner AK (1969) Lycopersicon and Solanum resistant to the carmine and the two-spotted spider mite. J Econ Entomol 62:834–836

    Google Scholar 

  • Gerlach W, Schneider R (1964) Nachweise in Pyrenochaeta-stadiums bei Stammen des Korkwurzelerregers der Tomate. Phytopathology Z 50:262–269

    Google Scholar 

  • Gerster H (1997) The potential role of lycopene for human health. J Am Coll Nutr 16:109–126

    PubMed  CAS  Google Scholar 

  • Gidoni D, Fuss E, Burbidge A, Speckmann GJ, James S, Nijkamp D, Mett A, Feiler J, Smoker M, de Vroomen MJ, Leader D, Liharska T, Groenendijk J, Coppoolse E, Smit JJ, Levin I, de Both M, Schuch W, Jones JD, Taylor IB, Theres K, van Haaren MJ (2003) Multi-functional T-DNA/Ds tomato lines designed for gene cloning and molecular and physical dissection of the tomato genome. Plant Mol Biol 51:83–98

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW (2005) TILLING without a plough: a new method with applications for reverse genetics. Curr Opin Plant Biol 8:211–215

    Article  PubMed  CAS  Google Scholar 

  • Gilchrist EJ, Haughn GW, Ying CC, Otto SP, Zhuang J, Cheung D, Hamberger B, Aboutorabi F, Kalynyak T, Johnson L, Bohlmann J, Ellis BE, Douglas CJ, Cronk QC (2006) Use of Ecotilling as an efficient SNP discovery tool to survey genetic variation in wild populations of Populus trichocarpa. Mol Ecol 15:1367–1378

    Article  PubMed  CAS  Google Scholar 

  • Gill BS (1983) Tomato cytogenetics — a search for new frontiers. In: Swaminathan MS, Gupta PK, Sinha V (eds) Cytogenetics of crop plants. Macmillan India, New Delhi, India, pp 456–480

    Google Scholar 

  • Giordano LB, Gabelman WH, Gerloff GC (1982) Inheritance of differences in calcium utilization by tomatoes under low-calcium stress. J Am Soc Hort Sci 107:664–669

    CAS  Google Scholar 

  • Giordano LB, Silva-Lobo VL, Santana FM, Fonseca MEN, Boiteux LS (2005) Inheritance of resistance to the bipartite Tomato chlorotic mottle begomovirus derived from Lycopersicon esculentum cv. ‘Tyking’. Euphytica 143:27–33

    Article  Google Scholar 

  • Giorgiev C (1972) Anthocyanin fruit tomato. Tomato Genet Coop Rep 22:10

    Google Scholar 

  • Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Mol Biol 52:725–749

    Article  CAS  Google Scholar 

  • Giovannoni JJ (2004) Genetic regulation of fruit development and ripening. Plant Cell 16:S170–S180

    Article  PubMed  CAS  Google Scholar 

  • Giovannucci E (1999) Tomatoes, tomato-based products, lycopene, and cancer: Reviewof the epidemiologic literature. J Natl Canc Inst 91:317–331

    Article  CAS  Google Scholar 

  • Giovannucci E, Ascherio A, Rimm EB, Stampfer MJ, Colditz GA, Willett WC (1995) Intake of carotenoids and retinol in relation to risk of prostrate cancer. J Natl Canc Inst 87:1767–1776

    Article  CAS  Google Scholar 

  • Godt DE, Roitsch T (1997) Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggests an important function in establishing and maintaining sink metabolism. Plant Physiol 115:273–282

    Article  PubMed  CAS  Google Scholar 

  • Goffreda JC, Mutschler MA, Ave DA, Tingey WM, Steffens JC (1989) Aphid deterrence by glucose esters in glandular trichome exudate of wild tomato Lycopersicon pennellii. J Chem Ecol 15:2135–2147

    Article  CAS  Google Scholar 

  • Goffreda JC, Mutschler MA, Tingey WM (1988) Feeding behavior of potato aphid affected by glandular trichomes of wild tomato. Entomol Exp Appl 48:101–107

    Article  Google Scholar 

  • Goldman IL, Paran I, Zamir D (1995) Quantitative trait locus analysis of a recombinant inbred line population derived from a Lycopersicon esculentum × L. cheesmanii cross. Theor Appl Genet 90:925–932

    Article  Google Scholar 

  • Gonçalves MIF, Maluf WR, Gomes LAA, Barbosa L (1998) Variation of 2-tridecanone level in tomato plant leaflets and resistance to two mite species (Tetranychus sp.). Euphytica 104:33–38

    Article  Google Scholar 

  • Gordillo LF, Stevens MR, Millard MA, Geary B (2007) Screening two Lycopersicon peruvianum collections for resistance to Tomato spotted wilt virus. Plant Dis (in press)

    Google Scholar 

  • Gould WA (1983) Tomato production, processing and quality, AVI Publ, Westport, CT, USA

    Google Scholar 

  • Goyer A, Illarionova V, Roooje S, Fischer M, Bacher A, Hanson AD (2004) Folate biosynthesis in higher plants. cDNA cloning, heterologous expression, and characterization of dihydroneopterin aldolases. Plant Physiol 135:103–111

    Article  PubMed  CAS  Google Scholar 

  • Graham E, Wang TC, Hanson P (2005) Preliminary evaluation of LA/777 introgression lines for early blight resistance. Tomato Genet Coop Rep 55:15–18

    Google Scholar 

  • Grandillo S, Ku HM, Tanksley SD (1999) Identifying the loci responsible for natural variation in fruit size and shape in tomato. Theor Appl Genet 99:978–987

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996a) Genetic analysis of RFLPs, GATA microsatellites and RAPDs in a cross between L. esculentum and L. pimpinellifolium. Theor Appl Genet 92:957–965

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (1996b) QTL analysis of horticultural traits differentiating the cultivated tomato from the closely related species Lycopersicon pimpinellifolium. Theor Appl Genet 92:935–951

    Article  CAS  Google Scholar 

  • Grandillo S, Tanksley SD (2005) Advanced backcross QTL analysis: Results and perspectives. In: Tuberosa R, Phillips RL, Gale M (eds) The wake of the double helix: from the green revolution to the gene revolution. Edizioni Avenue Media, Bologna, Italy, pp 115–132

    Google Scholar 

  • Grandillo S, Zamir D, Tanksley SD (1999) Genetic improvement of processing tomatoes: a 20-year perspective. Euphytica 110:85–97

    Article  Google Scholar 

  • Green SK, Hanson P (1996) A new source of PVY resistance. Tomato Genet Coop Rep 46:9

    Google Scholar 

  • Greene EA, Codomo CA, Taylor NE, Henikoff JG, Till BJ, Reynolds SH, Enns LC, Burtner C, Johnson JE, Odden AR, Comai L, Henikoff S (2003) Spectrum of chemically induced mutations from a large-scale reverse-genetic screen in Arabidopsis. Genetics 164:731–740

    PubMed  CAS  Google Scholar 

  • Griffiths PD (1998) Inheritance and linkage of geminivirus resistance genes derived from Lycopersicon chilense (Dunal) in tomato (Lycopersicon esculentum Mill.). Univ of Florida, Gainesville, Florida, USA, pp 170

    Google Scholar 

  • Griffiths PD, Scott JW (2001) Inheritance and linkage of Tomato mottle virus resistance genes derived from Lycopersicon chilense accession LA 1932. J Am Soc Hort Sci 126:462–467

    CAS  Google Scholar 

  • Grogan RG, Kimble KA, Misaghi I (1975) A stemcanker disease of tomato caused by Alternaria alternata f. sp. lycopersici. Phytopathology 65:880–886

    Google Scholar 

  • Grube RC, Blauth JR, Arnedo AMS, Caranta C, Jahn MK (2000a) Identification and comparative mapping of a dominant potyvirus resistance gene cluster in Capsicum. Theor Appl Genet 101:852–859

    Article  CAS  Google Scholar 

  • Grube RC, Radwanski ER, Jahn M (2000b) Comparative genetics of disease resistance within the Solanaceae. Genetics 155:873–887

    PubMed  CAS  Google Scholar 

  • Gundersen V, McCall D, Bechmann IE (2001) Comparison of major and trace element concentrations in Danish greenhouse tomatoes (Lycopersicon esculentum cv. Aromata F1) cultivated in different substrates. J Agric Food Chem 49:3808–3815

    Article  PubMed  CAS  Google Scholar 

  • Gur A, Semel Y, Cahaner A, Zamir D (2004) Real-time QTL of complex phenotypes in tomato interspecific introgression lines. Trends Plant Sci 9(3):107–109

    Article  PubMed  CAS  Google Scholar 

  • Gur A, Zamir D (2004) Unused natural variation can lift yield barriers in plant breeding. PLOS Biol 2:1610–1615

    Article  CAS  Google Scholar 

  • Gut IG (2004) An overview of genotyping and single nucleotide polymorphisms (SNP). In: Rapley R, Harbron S (eds) Molecular analysis and genome discovery. Wiley, Chichester, UK, pp 43–64

    Chapter  Google Scholar 

  • Haanstra JP, Wye C, Verbakel H, Meijer-Dekens F, van den Berg P, Odinot P, van Heusden AW, Tanksley S, Lindhout P, Peleman J (1999) An integrated high-density RFLP-AFLP map of tomato based on two Lycopersicon esculentum × L. pennelli F2 populations. Theor Appl Genet 99:254–271

    Article  CAS  Google Scholar 

  • Haanstra JPW (2000) Characterization of resistance genes to Cladosporium fulvum on the short arm of chromosome 1 of tomato. Wageningen Univ dissertation no. 2735, Wageningen, The Netherlands, pp 119

    Google Scholar 

  • Hall RD (2006) Plantmetabolomics: fromholistic hope, to hype, to hot topic. New Phytol 169:453–468

    Article  PubMed  CAS  Google Scholar 

  • Hamza S, Chupeau Y (1993) Re-evaluation of conditions for plant regeneration and Agrobacterium-mediated transformation from tomato (Lycopersicon esculentum). J Exp Bot 44:1837–1845

    Article  CAS  Google Scholar 

  • Hancock JF (2004) Plant evolution and the origin of crop species, CABI Publ, Wallingford, Oxon, UK, pp 313

    Google Scholar 

  • Hanson AD, Gregory JF (2002) Synthesis and turnover of folates in plants. Curr Opin Plant Biol 5:244–249

    Article  PubMed  CAS  Google Scholar 

  • Hanson P, Green SK, Kuo G (2006) Ty-2, a gene on chromosome 11 conditioning geminivirus resistance in tomato. Tomato Genet Coop Rep 56:17–18

    Google Scholar 

  • Hanson PM, Yang R, Wu J, Chen J, Ledesma D, Tsou SCS, Lee T (2004) Variation for antioxidant activity and antioxidants in tomato. J Am Soc Hort Sci 129:704–711

    CAS  Google Scholar 

  • Harborne JB (1994) The flavonoids. Advances in research since 1986. 1st edn. Chapman Hall, London

    Google Scholar 

  • Harborne JB, Williams CA (2000) Advances in flavonoid research since 1992. Phytochemistry 55:481–504

    Article  PubMed  CAS  Google Scholar 

  • Harper L, Cande W (2000) Mapping a new frontier; development of integrated cytogenetic maps in plants. Funct Integr Genom 1:89–98

    Article  CAS  Google Scholar 

  • Harrak H, Azelmat S, Baker EN, Tabaeizadeh Z (2001) Isolation and characterization of a gene encoding a drought-induced cysteine protease in tomato (Lycopersicon esculentum). Genome 44:368–374

    Article  PubMed  CAS  Google Scholar 

  • Harrison L (2004) The Shaker book of the garden: with a facsimile of the original gardener’s manual of 1843. Barron’s, Hauppauge, NY

    Google Scholar 

  • Hassan S, Thomas PE (1988) Extreme resistance to Tomato yellow top virus and Potato leaf roll virus in Lycopersicon peruvianum and some of its tomato hybrids. Phytopathology 78:1164–1167

    Google Scholar 

  • Hawthorne DJ, Shapiro JA, Tingey WM, Mutschler MA (1992) Trichome-borne and artificially applied acylsugars of wild tomato deter feeding and ovoposition of the leafminer Liriomyza trifolii. Entomol Exp Appl 65:65–73

    Article  CAS  Google Scholar 

  • He C, Poysa V, Yu K (2002) Development and characterization of simple sequence repeat (SSR) markers and their use in determining relationships among Lycopersicon esculentum cultivars. Theor Appl Genet 106:363–373

    PubMed  Google Scholar 

  • Hedrick UP, Booth NO (1907) Mendelian characters in tomatoes. Proc Am Soc Hort Sci 5:19–24

    Google Scholar 

  • Helentjaris T, King G, Slocum M, Siedenstrang C, Wegman S (1985) Restriction fragment polymorphisms as probes for plant diversity and their development as tools for applied plant breeding. Plant Mol Biol 5:109–118

    Article  CAS  Google Scholar 

  • Hendrix J, Frazier WA (1949) Studies of the inheritance of stemphylium resistance in tomatoes. Hawaii Agric Exp Stn Tech Bull 8, pp 24

    Google Scholar 

  • Henikoff JG, Henikoff S (1996) Using substitution probabilities to improve position-specific scoring matrices. Comput Appl Biosci 12:135–143

    PubMed  CAS  Google Scholar 

  • Henikoff JG, Pietrokovski S, McCallum CM, Henikoff S (2000) Blocks-based methods for detecting protein homology. Electrophoresis 21:1700–1706

    Article  PubMed  CAS  Google Scholar 

  • Henikoff S, Till BJ, Comai L (2004) TILLING. Traditional mutagenesis meets functional genomics. Plant Physiol 135:630–636

    Article  PubMed  CAS  Google Scholar 

  • Hernández F (1651) Nova plantarum animalium et mineralium Mexicanorum historia. Vitalis Mascardi, Rome, Italy

    Google Scholar 

  • Hertog MGL, Feskens EJ, Kromhout D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349:699

    Article  PubMed  CAS  Google Scholar 

  • Hewitt JD, Garvey TC (1987) Wild sources of high soluble solids in tomato. In: Nevins DJ, Jones RA (ed) Plant biology, vol 4, Tomato biotechnology. AR Liss, New York, pp 45–54

    Google Scholar 

  • Hirai MY, Klein M, Fujikawa Y, Yano M, Goodenowe DB, Yamazaki Y, Kanaya S, Nakamura Y, Kitayama M, Suzuki H, Sakurai N, Shibata D, Tokuhisa J, Reichelt M, Gershenzon J, Papenbrock J, Saito K (2005) Elucidation of gene-to-gene and metabolite-to-gene networks in Arabidopsis by integration of metabolomics and transcriptomics. J Biol Chem 280:25590–25595

    Article  PubMed  CAS  Google Scholar 

  • Hirai MY, Yano M, Goodenowe DB, Kanaya S, Kimura T, Awazuhara M, Arita M, Fujiwara T, Saito K (2004) Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proc Natl Acad Sci USA 101:10205–10210

    Article  PubMed  CAS  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD (2003) Insertional mutants: a foundation for assessing gene function. Trends Plant Sci 8:205–207

    Article  PubMed  CAS  Google Scholar 

  • Ho T-Y, Mishkind ML (1991) The influence of water deficits on mRNA levels in tomato. Plant Cell Environ 14:67–75

    Article  CAS  Google Scholar 

  • Hobson GE, Davies JN (1971) The tomato. In: Holme AC (ed) The biochemistry of fruits and their products, vol 2. Academic Press, New York, pp 437–482

    Google Scholar 

  • Hohmann U, Jacobs G, Jung C (2005) An EMS mutagenesis protocol for sugar beet and isolation of non-bolting mutants. Plant Breed 124:317–321

    Article  Google Scholar 

  • Holtan HE, Hake S (2003) Quantitative trait locus analysis of leaf dissection in tomato using Lycopersicon pennellii segmental introgression lines. Genetics 165:1541–1550

    PubMed  CAS  Google Scholar 

  • Horkheimer H (1973) Alimentación y obtención de alimentos en el Perú prehispánico. Universidad Nacional Mayor de San Marcos, Lima

    Google Scholar 

  • Horsch RB, Fry JE, Hoffmann NL, Eichholtz D, Rogers SG, Fraley RT (1985) A simple and general method for transferring genes into plants. Science 227:1229–1231

    Article  CAS  Google Scholar 

  • Hossain T, Rosenberg I, Selhub J, Kishore G, Beachy R, Schubert K (2004) Enhancement of folates in plants through metabolic engineering. Proc Natl Acad Sci USA 101:5158–5163

    Article  PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT, Chiu LH, Charng YY, Wang YC, Chan MT (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    Article  PubMed  CAS  Google Scholar 

  • Huang CC, Cui YY, Weng CR, Zabel P, Lindhout P (2000) Development of diagnostic PCR markers closely linked to the tomato powdery mildew resistance gene Ol-1 on chromosome 6 of tomato. Theor Appl Genet 101:918–924

    Article  CAS  Google Scholar 

  • Imai R, Moses MS, Bray EA (1995) Expression of an ABA induced gene of tomato in transgenic tobacco during periods of water deficit. J Exp Bot 46:1077–1084

    Article  CAS  Google Scholar 

  • Isaacson T, Ronen G, Zamir D, Hirschberg J (2002) Cloning of tangerine from tomato reveals a carotenoid isomerase essential for the production of β-carotene and xanthophylls in plants. Plant Cell 14:333–342

    Article  PubMed  CAS  Google Scholar 

  • Janoria MP, Rhodes AM (1974) Juice viscosity as related to various juice constituents and fruit characters in tomatoes. Euphytica 23:533–562

    Article  Google Scholar 

  • Jarret RL, Sayama H, Tigchelaar EC (1984) Pleiotropic effects associated with the chlorophyll intensifier mutations high pigment and dark green in tomato. J Am Soc Hort Sci 109:873–878

    CAS  Google Scholar 

  • Jaunet T, Wang J-F (1999) Variation in genotype and aggressiveness of Ralstonia solanacearum race 1 isolated from tomato in Taiwan. Phytopathology 89:320–327

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JA (1948) The origin of the cultivated tomato. Econ Bot 2:379–392

    Google Scholar 

  • Jenkins JA, Mackinney G (1955) Carotenoids of the apricot tomato and its hybrids with yellow and tangerine. Genetics 40:715–720

    PubMed  CAS  Google Scholar 

  • Jeunken MJW, Lindhout P (2004) The development of lettuce backcross inbred lines (BILs) for exploitation of the Lactuca saligna (wild lettuce) germplasm. Theor Appl Genet 109:394–401

    Google Scholar 

  • Ji Y, Chetelat RT (2003) Homoeologous pairing and recombination in Solanum lycopersicoides monosomic addition and substitution lines of tomato. Theor Appl Genet 106:979–989

    PubMed  CAS  Google Scholar 

  • Ji Y, Scott JW (2005) Identification of RAPD markers linked to Lycopersicon chilense derived Begomovirus resistant genes on chromosome 6 of tomato. Acta Hort 695:407–416

    CAS  Google Scholar 

  • Ji Y, Scott JW (2006) Ty-3, a Begomovirus resistance locus linked to Ty-1 on chromosome 6 of tomato. Tomato Genet Coop Rep 56:22–25

    Google Scholar 

  • Ji Y, Scott JW (2007) Tomato. In: Singh RJ (ed) Genetic resources, chromosome engineering, and crop improvement series IV: Vegetable Crops. CRC Press, Boca Raton, FL, pp 59–113

    Google Scholar 

  • Ji Y, Scott JW, Hanson P, Graham E, Maxwell DP (2007) Sources of resistance, inheritance, and location of genetic loci conferring resistance to members of the tomato-infecting Begomoviruses. In: Czosnek H (ed) Tomato yellow leaf curl virus disease: management, molecular biology, breeding for resistance. Kluwer Academic Publishers, Dordrecht (in press)

    Google Scholar 

  • Jia GX, Zhu ZQ, Chang FQ, Li YX (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21:141–146

    Article  CAS  Google Scholar 

  • Jiang XL, He ZM, Peng ZQ, Qi Y, Chen Q, Yu SY (2007) Cholera toxin B protein in transgenic tomato fruit induces systemic immune response in mice. Transgenic Res 16:169–175

    Article  PubMed  CAS  Google Scholar 

  • Jin S, Chen CCS, Plant AL (2000) Regulation by ABA of osmotic-stress-induced changes in protein synthesis in tomato roots. Plant Cell Environ 23:51–60

    Article  CAS  Google Scholar 

  • Jones CM, Mes P, Myers JR (2003) Characterization and inheritance of the anthocyanin fruit (Aft) tomato. J Hered 94:449–456

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Dickinson MJ, Balint-Kurti PJ, Dixon MS, Jones JDG (1993) Two complex resistance loci revealed in tomato by classical and RFLP mapping of the Cf-2, Cf-4, Cf-5, and Cf-9 genes for resistance to Cladosporium fulvum. Mol Plant-Micr Interact 6:348–357

    CAS  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H, Stall RE, Schaad NW (2004) Reclassification of the Xanthomonads associated with bacterial spot disease of tomato and pepper. Syst Appl Microbiol 27:755–762

    Article  PubMed  CAS  Google Scholar 

  • Jones JB, Lacy GH, Bouzar H, Minsavage GE, Stall RE, Schaad NW (2005) Bacterial spot-Worldwide distribution, importance and review. Acta Hort 695:27–33

    Google Scholar 

  • Juvik JA, Berlinger MJ, Ben-David T, Rudich J (1982) Resistance among accessions of genera Lycopersicon and Solanum to four of the main insect pests of tomato in Israel. Phytoparasitica 10:145–156

    Google Scholar 

  • Juvik JA, Shapiro JA, Young TE, Mutschler MA (1994) Acylglucose from wild tomato alters behavior and reduces growth and survival of Helicoverpa zea and Spodoptera exigua (Lepidoptera: Noctuidae). J Econ Entomol 87:482–492

    CAS  Google Scholar 

  • Kabelka E, Franchino B, Francis DM (2002) Twoloci fromLycopersicon hirsutum LA407 confer resistance to strains of Clavibacter michiganensis subsp. michiganensis. Phytopathology 92(5):504–510

    Article  PubMed  CAS  Google Scholar 

  • Kabelka E, Yang W, Francis DM (2004) Improved tomato fruit color within an inbred backcross line derived from Lycopersicon esculentumand L. hirsutum involves the interaction of loci. J Am Soc Hort Sci 129:250–257

    CAS  Google Scholar 

  • Kahn TL, Fender SE, Bray EA, O’Connell MA (1993) Characterization of expression of drought-and ABA-regulated tomato genes in the drought-resistant species Lycopersicon pennellii. Plant Physiol 103:597–605

    PubMed  CAS  Google Scholar 

  • Kamal AHM, Takashina T, Egashira H, Satoh H, Imanishi S (2001) Introduction of aromatic fragrance into cultivated tomato from the ‘peruvianum complex’. Plant Breed 120:179–181

    Article  Google Scholar 

  • Kanwar JS, Kerr EA, Harney PM (1980a) Linkage of Cf-1 to Cf-11 genes for resistance to tomato leaf mold Cladosporium fulvum Cke. Rep Tomato Genet Coop 30:20–21

    Google Scholar 

  • Kanwar JS, Kerr EA, Harney PM (1980b) Linkage of Cf-12 to Cf-24 genes for resistance to tomato leaf mold Cladosporium fulvum Cke. Rep Tomato Genetics Coop 30:22–23

    Google Scholar 

  • Kartha KK, Gamborg OL, Shyluk JP, Constabel F (1976) Morphogenetic investigations on in vitro leaf culture of tomato (Lycopersicon esculentum Mill. cv. Starfire) and high frequency plant regeneration. Z Pflazenphysiol 77:292–301

    Google Scholar 

  • Kawchuk LM, Hachey J, Lynch DR (1998) Development of sequence characterized DNA markers linked to a dominant verticillium wilt resistance gene in tomato. Genome 41:91–95

    Article  PubMed  CAS  Google Scholar 

  • Kebede H, Martin B, Nienhuis J, King G (1994) Leaf anatomy of two Lycopersicon species with contrasting gas exchange properties. Crop Sci 34:108–113

    Article  Google Scholar 

  • Kedar N, Retig N, Katan J (1967) Non-random segregation of gene I for fusarium resistance in tomato. Euphytica 16:258–266

    Article  Google Scholar 

  • Kennedy GG (2003) Tomato, pests, parasitoids, and predators: tritrophic interactions involving the genus Lycopersicon. Annu Rev Entomol 48:51–72

    Article  PubMed  CAS  Google Scholar 

  • Kennedy GG (2007) Resistance in tomato and other Lycopersicon species to insect and mite pests. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2: tomato. Science Publ, Enfield, NH, USA, pp 488–519

    Google Scholar 

  • Kennedy GG, Yamamoto RT (1979) A toxic factor causing resistance in a wild tomato to the tobacco hornworm and some other insects. Entomol Exp Appl 26:121–126

    Google Scholar 

  • Kerckhoffs LHJ, Kendrick RE (1997) Photocontrol of anthocyanin biosynthesis in tomato. J Plant Res 110:141–149

    Article  CAS  Google Scholar 

  • Kerr EA (1958a) Linkage relations of gf. Tomato Genet Coop Rep 8:21

    Google Scholar 

  • Kerr EA (1958b) Mutations for chlorophyll retention in ripe fruit. Tomato Genet Coop Rep 8:22

    Google Scholar 

  • Kerr EA, Cook FI (1983) Ontario 7710-a tomato breeding line with resistance to bacterial speck, Pseudomonas syringae pv. tomato (Okabe). Can J Plant Sci 63:1107–1109

    Article  Google Scholar 

  • Khush GS, Rick CM (1967a) Novel compensating trisomics of the tomato: cytogenetics, monosomic analysis, and other applications. Genetics 56:297–307

    PubMed  CAS  Google Scholar 

  • Khush GS, Rick CM (1967b) Tomato tertiary trisomics: Origin, identification, morphology and use in determining position of centromeres and arm location of markers. Can J Genet Cytol 9:610–631

    Google Scholar 

  • Khush GS, Rick CM (1968a) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23:452–484

    Article  Google Scholar 

  • Khush GS, Rick CM (1968b) Tomato telotrisomics: origin, identification and use in linkage mapping. Cytologia 33:137–148

    Google Scholar 

  • Kind T, Fiehn O (2006) Metabolomic database annotations via query of elemental compositions: mass accuracy is insufficient even at less than 1 ppm. BMC Bioinformatics 7:234

    Article  PubMed  CAS  Google Scholar 

  • King A, Young G (1999) Characteristics and occurrence of phenolic phytochemicals. J Am Dietetic Assoc 99:213–218

    Article  CAS  Google Scholar 

  • Klann EM, Hall B, Bennett AB (1996) Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiol 112:1321–1330

    Article  PubMed  CAS  Google Scholar 

  • Knapp S, Darwin SC (2007) Proposal to conserve the name Solanum cheesmaniae (L. Riley) Fosberg against S. cheesmanii Geras. (Solanaceae). Taxon 55:806–807

    Article  Google Scholar 

  • Knekt P, Jarvinen R, Seppaanen R, Heliovaara M, Teppi L, Pukkala E, Aromaa A (1997) Dietary flavonoids and the risk of lung cancer and other malignant neoplasms. Am J Epidemiol 146:223–230

    PubMed  CAS  Google Scholar 

  • Kodym A, Afza R (2003) Physical and chemical mutagenesis. Methods Mol Biol 236:189–204

    PubMed  CAS  Google Scholar 

  • Kohler GW, Lincoln RE, Porter JW, Zscheile FP, Caldwell RM, Harper RH, Silver W (1947) Selection and breeding for high beta-carotene content (provitamin A) in tomato. Bot Gaz 109:219–225

    Article  CAS  Google Scholar 

  • Kojima S, Takahashi Y, Kobayashi Y, Monna L, Sasaki T, Araki T, Yano M (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  PubMed  CAS  Google Scholar 

  • Kole C, Ashrafi H, Lin G, Foolad M (2006) Identification and molecular mapping of a new R gene, Ph-4, conferring resistance to late blight in tomato. Solanaceae Conf, Univ of Wisconsin, Madison, Abstr 449

    Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Konings EJ, Roomans HH, Dorant E, Goldbohm RA, Saris WH, van den Brandt PA (2001) Folate intake of the Dutch population according to newly established liquid chromatography data for foods. Am J Clin Nutr 73:765–776

    PubMed  CAS  Google Scholar 

  • Konsler TR (1973) Three mutants appearing in ‘Manapal’ tomato. HortScience 8:331–333

    Google Scholar 

  • Koumproglou R, Wilkes TM, Towson P, Wang XY, Beyon J, Pooni HS, Newbury HJ, Kearsey MJ (2002). STAIRS: a new genetic resource for functional genomic studies of Arabidopsis. Plant J 31(3):355–364

    Article  PubMed  CAS  Google Scholar 

  • Kozukue N, Friedman M (2003) Tomatine, chlorophyll, β-carotene and lycopene content in tomatoes during growth and maturation. J Sci Food Agric 83:195–200

    Article  CAS  Google Scholar 

  • Kramer M, Sanders R, Bolkan H, Waters C, Sheehy RE, Hiatt WR (1992) Postharvest evaluation of transgenic tomatoes with reduced levels of polygalacturonase: processing, firmness and disease resistance. Postharvest Biol Tec 1:241–255

    Article  CAS  Google Scholar 

  • Krishnaswamy K, MadhavanNair K (2001) Importance of folate in human nutrition. Brit J Nutr 85:S115–S124

    PubMed  CAS  Google Scholar 

  • Krysan PJ, Young JC, Jester PJ, Monson S, Copenhaver G, Preuss D, Sussman MR (2002) Characterization of T-DNA insertion sites in Arabidopsis thaliana and the implications for saturation mutagenesis. Omics 6:163–174

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M (2004) RNA interference in crop plants. Curr Opin Biotechnol 15:139–143

    Article  PubMed  CAS  Google Scholar 

  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishimura M, Nishio T (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    Article  PubMed  CAS  Google Scholar 

  • Kwok P-Y (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev Genom Hum Genet 2:235–258

    Article  CAS  Google Scholar 

  • Labate JA, Baldo AM (2005) Tomato SNP discovery by EST mining and resequencing. Mol Breed 16:343–349

    Article  CAS  Google Scholar 

  • Lachance PA (1998) Overview of key nutrients: micronutrient aspects. Nutr Rev 56:S34–S39

    Article  PubMed  CAS  Google Scholar 

  • Lambeth VN, Straten EF, Fields ML (1966) Fruit quality attributes of 250 foreign and domestic tomato accessions. Univ Missouri Agric Expt Stn Res Bull 908

    Google Scholar 

  • Lanfermeijer FC, Dijkhuis J, Sturre MJG, de Haan P, Hille J (2003) Cloning and characterization of the durable Tomato mosaic virus resistance gene Tm-2 2 from Lycopersicon esculentum. Plant Mol Biol 52:1037–1049

    Article  PubMed  CAS  Google Scholar 

  • Lanfermeijer FC, Warmink J, Hille J (2005) The products of the broken Tm-2 and the durable Tm-2 2 resistance genes from tomato differ in four amino acids. J Exp Bot 56:2925–2933

    Article  PubMed  CAS  Google Scholar 

  • Lange WH, Bronson L (1981) Insect pests of tomato. Annu Rev Entomol 26:345–371

    Article  Google Scholar 

  • Langella R, Ercolano MR, Monti LM, Frusciante L, Barone A (2004) Molecular marker assisted transfer of resistance to TSWV in tomato elite lines. J Hort Sci Biotechnol 79:806–810

    CAS  Google Scholar 

  • Langford AN (1937) The parasitism of Cladosporium fulvum cooke and the genetics of resistance to it. Can J Res 15:108–128

    Google Scholar 

  • Langley KR, Martin A, Stenning R, Murray AJ, Hobson GE, Schuch WW, Bird CR (1994) Mechanical and optical assessment of the ripening of tomato fruit with reduced polygalacturonase activity. J Sci Food Agric 66:547–554

    Article  CAS  Google Scholar 

  • Lapidot M, Friedmann M, Lachman O, Yehezkel A, Nahon S, Cohen S, Pilowsky M (1997) Comparison of resistance level to Tomato yellow leaf curl virus among commercial cultivars and breeding lines. Plant Dis 81:1425–1428

    Article  Google Scholar 

  • Laquatra I, Yeung DL, Storey M, Forshee R (2005) Health benefits of lycopene in tomatoes — conference summary. Nutr Today 40:29–36

    Google Scholar 

  • Laterrot H (1975) Selection pour la resistance au mildiou, Phytophthora infestans Mont., de Bary chez la tomate. Ann Amel Plant 24:129–149

    Google Scholar 

  • Laterrot H (1976) Localisation chromosomique de 12 chez la tomate controlant la resistance au pathotype 2 de Fusarium oxysporum f. lycopersici. Ann Amel Plant 26:485–491

    Google Scholar 

  • Laterrot H (1983) La utte genetiquecontre lamaadie des raciness liegueses de la tomate. Rev Hort 238:143–150

    Google Scholar 

  • Laterrot H (1997) Breeding strategies for disease resistance in tomatoes with emphasis on the tropics: current status and research challenges. In: Maciel GA, Lopes GMB, Hayward C, Mariano RRL, de A Maranhao EA (eds) 1st Intl Symp on Trop Tomato Dis, ASHS Press, Alexandria, VA, USA, pp 126–132

    Google Scholar 

  • Laterrot H, Couteadier Y (1989) Linkage between TMV and FORL resistances. Tomato Genet Coop Rep 39:21

    Google Scholar 

  • Laterrot H, Moretti A (1992) FORL resistance in TM22-ah lines. Tomato Genet Coop Rep 42:24–25

    Google Scholar 

  • Laterrot H, Moretti A (1996) FORL resistance in TM2 and TM2a lines from the TGRC stock. Tomato Genet Coop Rep 46:17

    Google Scholar 

  • Laterrot H, Pecaut P (1969) Gene Tm-2: new source. Tomato Genet Coop Rep 19:13–14

    Google Scholar 

  • Lauge R, Dmitriev AP, Joosten MHA, De Wit PJGM (1998) Additional resistance gene(s) against Cladosporium fulvum present on the Cf-9 introgression segment are associated with strong PR protein accumulation. Mol Plant-Micr Interact 11:301–308

    Article  CAS  Google Scholar 

  • Lawrence RJ, Pikaard CS (2003) Transgene-induced RNA interference: a strategy for overcoming gene redundancy in polyploids to generate loss-of-function mutations. Plant J 36:114–121

    Article  PubMed  CAS  Google Scholar 

  • Lawson DM, Lunde CF, Mutschler MA (1997) Marker-assisted transfer of acylsugar-mediated pest resistance from the wild tomato, Lycopersicon pennellii, to the cultivated tomato, Lycopersicon esculentum. Mol Breed 3:307–317

    Article  CAS  Google Scholar 

  • Le LQ, Lorenz Y, Scheurer S, Fotisch K, Enrique E, Bartra J, Biemelt S, Vieths S, Sonnewald U (2006) Design of tomato fruits with reduced allergenicity by dsRNAi-mediated inhibition of ns-LTP (Lyc e 3) expression. Plant Biotechnol J 4:231–242

    Article  PubMed  CAS  Google Scholar 

  • Lecomte L, Duffé P, Buret M, Servin B, Hospital F, Causse M (2004a) Marker-assisted introgression of 5 QTLs controlling fruit quality traits into three tomato lines revealed interactions between QTLs and genetic backgrounds. Theor Appl Genet 109:658–668

    Article  PubMed  CAS  Google Scholar 

  • Lecomte L, Saliba-Colombani V, Gautier A, Gomez-Jimenez MC, Duffé P, Buret M, Causse M (2004b) Fine mapping of QTLs of chromosome 2 affecting the fruit architecture and composition of tomato. Mol Breed 13:1–14

    Article  CAS  Google Scholar 

  • Lee CY, Robinson RW (1980) Influence of the crimson gene (og c) on vitamin content in tomato. HortScience 15:260–261

    CAS  Google Scholar 

  • Lee NKM (1832) The cook’s own book: being a complete culinary encyclopedia by a Boston housekeeper. Arno Press, New York, 1972, facsimile reprint

    Google Scholar 

  • Lee S, Kim S-Y, Chung E, Joung Y-H, Pai H-S, Hur C-G, Choi D (2004a) EST and microarray analyses of pathogen-responsive genes inhot pepper (Capsicumannuum L.) nonhost resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct Integr Genom 4:196–205

    Google Scholar 

  • Lee S-H, Walker DR, Cregan PB, Boerma HR (2004b) Comparison of four flow cytometric SNP detection assays and their use in plant improvement. Theor Appl Genet 110:167–174

    Article  PubMed  CAS  Google Scholar 

  • Lefebvre V, Daubeze A-M, van der Voort JR, Peleman J, Bardin M, Palloix A (2003) QTLs for resistance to powdery mildew in pepper under natural and artificial infections. Theor Appl Genet 107:661–666

    Article  PubMed  CAS  Google Scholar 

  • Légnani R, Gebre-Selassie K, Marchoux G, Laterrot H (1997) Interactions between PVY pathogens and tomato lines. Tomato Genet Coop Rep 47:13–15

    Google Scholar 

  • Lekse JM, Xia L, Morrow JD, May JM (2001) Plant catechols prevent lipid peroxidation in human plasma erythrocytes. Mol Cell Biochem 226:89–95

    Article  PubMed  CAS  Google Scholar 

  • Lemaire-Chamley M, Petit J, Garcia V, Just D, Baldet P, Germain V, Fagard M, Mouassite M, Cheniclet C, Rothan C (2005) Changes in transcriptional profiles are associated with early fruit tissue specialization in tomato. Plant Physiol 139:750–769

    Article  PubMed  CAS  Google Scholar 

  • Lenke CA, Mutschler MA (1984) Inheritance of glandular trichomes in crosses between Lycopersicon esculentum and Lycopersicon pennellii. J Am Soc Hort Sci 109:592–596

    Google Scholar 

  • Leonardi C, Ambrosino P, Esposito F, Fogliano V (2000) Antioxidative activity and carotenoid and tomatine contents in different typologies of fresh consumption tomatoes. J Agric Food Chem 48:4723–4727

    Article  PubMed  CAS  Google Scholar 

  • Lercari B, Manetti A, Bertram L (2002) Temporal and spatial pattern of light-dependent acquisition of competence for shoot formation in tomato hypocotyl. I Light pulse conditions. Adv Hort Sci 16:17–24

    Google Scholar 

  • Lesley JW (1932) Trisomic types of the tomato and their relation to the genes. Genetics 17:545–559

    PubMed  CAS  Google Scholar 

  • Lesley JW, Lesley MM (1956) A virescent tangerine mutant in R2 from seed treatment with radioactive isotope P32. Tomato Genet Coop Rep 6:17–18

    Google Scholar 

  • Levin I, Frankel P, Gilboa N, Tanny S, Lalazar A (2003) The tomato dark green mutation is a novel allele of the tomato homolog of the DEETIOLATED1 gene. Theor Appl Genet 106:454–460

    PubMed  CAS  Google Scholar 

  • Levin I, Gilboa N, Teselson E, Shen S, Schaffer AA (2000) Fgr, a major locus that modifies fructose to glucose ratio in mature tomato fruits. Theor Appl Genet 100:256–262

    Article  CAS  Google Scholar 

  • Levin I, Lalazar A, Bar M, Schaffer AA (2004) Non GMO fruit factories strategies for modulating metabolic pathways in the tomato fruit. Ind Crop Prod 20:29–36

    Article  CAS  Google Scholar 

  • Li L, Steffens JC (2002) Over expression of polyphenol oxidase in transgenic tomato plants results in enhanced bacterial disease resistance. Planta 215:239–247

    Article  PubMed  CAS  Google Scholar 

  • Li L, Strahwald J, Hofferbert HR, Lubeck J, Tacke E, Junghans H, Wunder J, Gebhardt C (2005a) DNA variation at the invertase locus invGE/GF is associated with tuber quality traits in populations of potato breeding clones. Genetics 170:813–821

    Article  PubMed  CAS  Google Scholar 

  • Li Z-K, Fu B-Y, Gao Y-M, Xu J-L, Ali J, Lafitte HR, Jiang YZ, Rey JD, Vijayakumar CHM, Maghirang R, Zheng T-Q, Zhu L-H (2005b) Genome-wide introgression lines and their use in genetic and molecular dissection of complex phenotypes in rice (Oryza sativa L.). Plant Mol Biol 59:33–52

    Article  PubMed  CAS  Google Scholar 

  • Liedl BE, Lawson DM, White KK, Shapiro JA, Cohen DE, Carson WG, Mutschler MA (1995) Acylsugar of wild tomato Lycopersicon pennelli alters settling and reduces oviposition of Bemisia argentifolii (Homoptera: Aleyrodidae). J Econ Entomol 88:742–748

    CAS  Google Scholar 

  • Lin TY, Kao YY, Lin S, Lin RF, Chen CM, Huang CH, Wang CK, Lin YZ, Chen CC (2001) A genetic linkage map of Nicotiana plumbaginifolia/Nicotiana longiflora based on RFLP and RAPD markers. Theor Appl Genet 103:905–911

    Article  CAS  Google Scholar 

  • Lincoln RE, Porter JW (1950) Inheritance of beta-carotene in tomatoes. Genetics 35:206–211

    PubMed  CAS  Google Scholar 

  • Lincoln RE, Zscheile FP, Porter JW, Kohler GW, Caldwell RM (1943) Provitamin A and vitamin C in the genus Lycopersicon. Bot Gaz 105:113–115

    Article  CAS  Google Scholar 

  • Lindhout P, Korta W, Cislik M, Vos I, Gerlagh T (1989) Further identification of races of Cladosporum fulvum (Fulvia fulva) on tomato originating from the Netherlands, France and Poland. Neth J Plant Pathol 85:143–148

    Article  Google Scholar 

  • Lindhout P, Pet G, Van der Beek H (1994) Screening wild Lycopersicon species for resistance to powdery mildew (Oidium lycopersicum). Euphytica 72:43–49

    Article  Google Scholar 

  • Linkage Committee (1973) Linkage summary. Tomato Genet Coop Rep 23:9–11

    Google Scholar 

  • Linnaeus C (1753) Species Plantarum, 1st ed. Stockholm: L. Salvius

    Google Scholar 

  • Lippman Z, Tanksley SD (2001) Dissecting the genetic pathway to extreme fruit size in tomato using a cross between the small-fruitedwildspecies Lycopersicon pimpinellifolium and L. esculentum var. giant heirloom. Genetics 158:413–422

    PubMed  CAS  Google Scholar 

  • Liu JP, Van Eck J, Cong B, Tanksley SD (2002) A new class of regulatory genes underlying the cause of pear-shaped tomato fruit. Proc Natl Acad Sci USA 99:13302–13306

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Chen H, Wei Y, Zhuang T (2005) Construction of a genetic map and localization of QTLs for yield traits in tomato by SSR markers. Prog Nat Sci 15:793–797

    Article  CAS  Google Scholar 

  • Liu Y, Roof S, Ye Z, Barry C, van Tuinen A, Vrebalov J, Bowler C, Giovannoni J (2004) Manipulation of light signal transduction as a means of modifying fruit nutritional quality in tomato. Proc Natl Acad Sci USA 101:9897–9902

    Article  PubMed  CAS  Google Scholar 

  • Liu Y, Zamir D (1999) Second generation L. pennellii introgression lines and the concept of bin mapping. Tomato Genet Coop Rep 49:26–30

    Google Scholar 

  • Liu Y-S, Gur A, Ronen G, Causse M, Damidaux R, Buret M, Hirschberg J, Zamir D (2003) There ismore to tomato fruit colour than candidate carotenoid genes. Plant Biotechnol J 1:195–207

    Article  PubMed  CAS  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth J, van Wijk R, Jahn MK (1999) Genome mapping in Capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Loh Y-T, Martin G (1995) The disease-resistance gene Pto and the fenthion-sensitivity gene Fen encode closely related functional protein kinases. Proc Natl Acad Sci USA 92:4181–4184

    Article  PubMed  CAS  Google Scholar 

  • Lois LM, Rodriguez-Concepcion M, Gallego F, Campos N, Boronat A (2000) Carotenoid biosynthesis during tomato fruit development: regulatory role of 1-deoxy-D-xylulose 5-phosphate synthase. Plant J 22:503–513

    Article  PubMed  CAS  Google Scholar 

  • Loppes R (1968) Ethyl methanesulfonate: an effective mutagen in Chlamydomonas reinhardi. Mol Gen Genet 102:229–231

    Article  PubMed  CAS  Google Scholar 

  • Louws FJ, Bell J, Medina-Mora CM, Smart CD, Opgenorth D, Ishimaru CA, Hausbeck MK, de Bruijin FJ, Fulbright DW (1998) Rep-PCR-mediated genomic fingerprinting: A rapid and effective method to identify Clavibacter micheganensis. Phytopathology 88:862–868

    Article  CAS  PubMed  Google Scholar 

  • Luckwill LC (1943a) The evolution of the cultivated tomato. J R Hort Soc 68:19–25

    Google Scholar 

  • Luckwill LC (1943b) The genus Lycopersicon: an historical, biological, and taxonomic survey of the wild and cultivated tomatoes. Aberdeen Univ Studies 120:1–44

    Google Scholar 

  • Lucock M (2000) Folic acid: Nutritional biochemistry, molecular biology, and role in disease processes. Mol Genet Metab 71:121–138

    Article  PubMed  CAS  Google Scholar 

  • Lukyanenko AN (1991) Disease resistance in tomato. In: Kalloo G (ed) Genetic improvement of tomato. Springer, Berlin Heidelberg New York, pp 99–119

    Google Scholar 

  • Lynch M, Walsh B (eds) (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  • Ma Y, Lin SQ, Gao Y, Li M, Luo WX, Zhang J, Xia NS (2003) Expression of ORF2 partial gene of hepatitis E virus in tomatoes and immunoactivity of expression products. World J Gastroenterol 9:2211–2215

    PubMed  CAS  Google Scholar 

  • MacArthur J (1926) Linkage studies with the tomato. Genetics 11:387–405

    PubMed  CAS  Google Scholar 

  • MacArthur J (1934) Linkage groups in the tomato. J Genet 29:123–133

    Google Scholar 

  • MacBride JF (1962) Solanaceae, in Flora of Peru. Field Mus Nat Hist Ser 13, pp 3–267

    Google Scholar 

  • Madhavi DL, Salunkhe DK (1998) Tomato. In: Salunkhe DK, Kadam SS (eds) Handbook of vegetable science. Marcel Dekker, New York, pp 171–201

    Google Scholar 

  • Maldonado C, Squeo FA, Ibacache E (2003) Phenotypic response of Lycopersicon chilense to water deficit. Rev Chil Hist Nat 76:129–137

    Article  Google Scholar 

  • Maluf WR, Barbosa LV, Santa-Cecília LVC (1997) 2-Tridecanone-mediated mechanisms of resistance to the South American tomato pinworm Scrobipalpuloides absoluta (Meyrick, 1917) (Lepidoptera-Gelechiidae) in Lycopersicon spp. Euphytica 93:189–194

    Article  CAS  Google Scholar 

  • Mangin B, Thoquet P, Olivier J, Grimsley NH (1999) Temporal and multiple quantitative trait loci analyses of resistance to bacterial wilt in tomato permit the resolution of linked loci. Genetics 151:1165–1172

    PubMed  CAS  Google Scholar 

  • Manning K, Tor M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB (2006) A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet 38:948–952

    Article  PubMed  CAS  Google Scholar 

  • Manuelyan H, Yordanov M, Yordanova Z, Ilieva Z (1975) Studies on β-carotene and lycopene content in the fruits of Lycopersicon esculentum Mill. × L. chilense Dun. hybrids. Qual Plant Foods Hum Nutr 25:205–21

    Article  CAS  Google Scholar 

  • Marczewski W, Flis B, Syller J, Schoefer PR, Gebhardt C (2001) A major quantitative trait locus for resistance to potato leafroll virus is located in a resistance hotspot on potato chromosome XI and is tightly linked to N-gene-like markers. Mol Plant-Micr Interact 14:1420–1425

    Article  CAS  Google Scholar 

  • Marshall JA, Knapp S, Davey MR, Power JB, Cocking EC, Bennett MD, Cox AV (2001) Molecular systematics of Solanum section Lycopersicum (Lycopersicon) using the nuclear ITS rDNA region. Theor Appl Genet 103:1216–1222

    Article  CAS  Google Scholar 

  • Martin B, Nienhuis J, King G, Schaefer A (1989) Restriction fragment length polymorphisms associated with water use efficiency in tomato. Science 243:1725–1728

    Article  CAS  PubMed  Google Scholar 

  • Martin B, Thorstenson Y (1988) Stable carbon isotope composition (d13C), water use efficiency and biomass productivity of Lycopersicon esculentum, Lycopersicon pennellii and the F1 hybrid. Plant Physiol 88:213–217

    PubMed  CAS  Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED, Tanksley SD (1993a) Map-based cloning of a protein-kinase gene conferring disease resistance in tomato. Science 262:1432–1436

    Article  PubMed  CAS  Google Scholar 

  • Martin G, Carmen de Vicente M, Tanksley SD (1993b) Highresolution linkage analysis and physical characterization of the Pto bacterial resistance locus in tomato. Mol Plant-Micr Interact 6:26–34

    CAS  Google Scholar 

  • Martin GB, Williams JGK, Tanksley SD (1991) Rapid identification of markers linked to a Pseudomonas resistance gene in tomato by using random primers and near-isogenic lines. Proc Natl Acad Sci USA 88:2336–2340

    Article  PubMed  CAS  Google Scholar 

  • Martin MW, Cannon OS, Dewey WG (1971) Pedigree history of curly-top-resistant tomato lines released by USDA. Tomato Genet Coop Rep 21:23–24

    Google Scholar 

  • Martin MW, Thomas PE (1986) Levels, dependability, and usefulness of resistance to Tomato curly top disease. Plant Dis 70:136–141

    Google Scholar 

  • Matthews RF, Crill P, Burgis D (1973) Ascorbic acid content of tomato varieties. Proc Florida State Hort Soc 86:242–250

    CAS  Google Scholar 

  • Matthiolus PA (1544) Di Pedacio Dioscoride Anazarbeo libri cinque della historia, et materia medicinale trodotti in lingua volgare Italiana, Venice

    Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000a) Targeted screening for induced mutations. Nat Biotechnol 18:455–457

    Article  PubMed  CAS  Google Scholar 

  • McCallum CM, Comai L, Greene EA, Henikoff S (2000b) Targeting induced local lesions IN genomes (TILLING) for plant functional genomics. Plant Physiol 123:439–442

    Article  PubMed  CAS  Google Scholar 

  • McClendon JH, Woodmansee CW, Somers GF (1959) Onthe occurrence of free galacturonic acid in apples and tomatoes. Plant Physiol 34:389

    PubMed  CAS  Google Scholar 

  • McCormick S, Niedermeyer J, Fry J, Barnason A, Horsch R, Fraley R (1986) Leaf disc transformation of cultivated tomato (L. esculentum) using Agrobacterium tumefaciens. Plant Cell Rep 5:81–84

    Article  CAS  Google Scholar 

  • McCue G (1952) Thehistory and use of the tomato: an annotated bibliography. Ann Missouri Bot Gar 39:289–348

    Article  Google Scholar 

  • McMeekin D (1992) Representations of pre-Columbian spindle whorls of the floral and fruit structure of economic plants. Econ Bot 46:171–180

    Google Scholar 

  • Mehta R, Cassol T, Li N, Ali N, Handa AK, Mattoo AK (2002) Engineered polyamine accumulation in tomato enhances phytonutrient content, juice quality, and vine life. Nat Biotechnol 20:613–618

    Article  PubMed  CAS  Google Scholar 

  • Meissner R, Chague V, Zhu Q, Emmanuel E, Elkind Y, Levy AA (2000) Technical advance: a high throughput system for transposon tagging and promoter trapping in tomato. Plant J 22:265–274

    Article  PubMed  CAS  Google Scholar 

  • Meissner R, Jacobson Y, Melamed S, Levyatuv S, Shalev G, Ashri A, Elkind Y, Levy A (1997) A new model system for tomato genetics. Plant J 12:1465–1472

    Article  CAS  Google Scholar 

  • Menda N, Semel Y, Peled D, Eshed Y, Zamir D (2004) In silico screening of a saturated mutation library of tomato. Plant J 38:861–872

    Article  PubMed  CAS  Google Scholar 

  • Mesbah LA, Kneppers RJA, Takken FLW, Laurent P, Hille J, Nijkamp HJJ (1999) Genetic and physical analysis of a YAC contig spanning the fungal disease resistance locus Asc of tomato (Lycopersicon esculentum). Mol Gen Genet 261:50–57

    Article  PubMed  CAS  Google Scholar 

  • Mieslerova B, Lebeda A, Chetelat RT (2000) Variation in response of wild Lycopersicon and Solanum spp. Against tomato powdery mildew (Oidium lycopersici). J. Phytopathol 148:303–311

    Article  Google Scholar 

  • Mihr C, Faurobert M, Pawłowski T, Bouchet JP, Sommerer N, Rossignol M, Negroni L, Causse M (2005) Proteome analysis of organoleptic quality in tomato. Acta Hort 682:277–283

    CAS  Google Scholar 

  • Miller JC, Tanksley SD (1990) RFLP analysis of phylogenetic relationships and genetic variation in the genus Lycopersicon. Theor Appl Genet 80:437–448

    CAS  Google Scholar 

  • Miller P (1754) The gardener’s dictionary, Abridged 4th ed. London: John and James Rivington

    Google Scholar 

  • Miller P (1768) The gardener’s dictionary, Abridged 8th ed. London

    Google Scholar 

  • Miller P (1807) The gardener’s and botanist’s dictionary, Posthumous ed. edited by Thomas Martin, Cambridge, London

    Google Scholar 

  • Minamiyama Y, Tsuro M, Hirai M (2006) An SSR-based linkage map of Capsicum annuum. Mol Breed 18:157–169

    Article  CAS  Google Scholar 

  • Miron D, Schaffer AA (1991) Sucrose phosphate synthase, sucrose synthase, and invertase activities in developing fruit of Lycopersicon hirsutum Humb. and Bonpl. Plant Physiol 95:623–627

    PubMed  CAS  Google Scholar 

  • Mishra SK, Tripp J, Winkelhaus S, Tschiersch B, Theres K, Nover L, Scharf KD (2002) In the complex family of heat stress transcription factors, HsfA1 has a unique role as master regulator of thermotolerance in tomato. Genes Dev 16:1555–1567

    Article  PubMed  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, de Vos CH (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141:1205–1218

    Article  PubMed  CAS  Google Scholar 

  • Molgaard P, Ravn H (1988) Evolutionary aspects of caffeoyl ester distribution in dicotyledons. Phytochemistry 27:2411–2421

    Article  CAS  Google Scholar 

  • Molloy AM, Scott JM (2001) Folates and prevention of disease. Public Health Nutr 4:601–609

    PubMed  CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1996) Salt tolerance in Lycopersicon species. IV. Efficiency of marker assisted selection for salt tolerance improvement. Theor Appl Genet 93:765–772

    Article  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997a) Salt tolerance in Lycopersicon species. V. Does genetic variability at quantitative trait loci affect their analysis? Theor Appl Genet 95:284–293

    Article  CAS  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1997b) Salt tolerance in Lycopersicon species. VI. Genotype-by-salinity interaction in quantitative trait loci detection: constitutive and response QTLs. Theor Appl Genet 95:706–713

    Article  Google Scholar 

  • Monforte AJ, Asins MJ, Carbonell EA (1999) Salt tolerance in Lycopersicon species. VII. Pleiotropic action of genes controlling earliness on fruit yield. Theor Appl Genet 98:593–601

    Article  Google Scholar 

  • Monforte AJ, Friedman E, Zamir D, Tanksley SD (2001) Comparison of a set of allelic QTL-NILs for chromosome 4 of tomato: Deductions about natural variation and implications for germplasm utilization. Theor Appl Genet 102:572–590

    Article  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000a) Development of a set of near isogenic and backcross recombinant inbred lines containingmost of the Lycopersicon hirsutumgenome in a L. esculentum genetic background: A tool for gene mapping and gene discovery. Genome 43:803–813

    Article  PubMed  CAS  Google Scholar 

  • Monforte AJ, Tanksley SD (2000b) Fine mapping of a quantitative trait locus (QTL) fromLycopersicon hirsutum chromosome 1 affecting fruit characteristics and agronomic traits: breaking linkage among QTLs affecting different traits and dissection of heterosis for yield. Theor Appl Genet 100:471–479

    Article  CAS  Google Scholar 

  • Moore JA (1935) The early history of the tomato or loveapple. Missouri Bot Gard Bull 23:134–138

    Google Scholar 

  • Moore S, Vrebalov J, Paxton P, Giovannoni J (2002) Use of genomics tools to isolate key ripening genes and analyse fruit maturation in tomato. J Exp Bot 53:2023–2030

    Article  PubMed  CAS  Google Scholar 

  • Moreau P, Thoquet P, Olivier J, Laterrot H, Grimsley N (1998) Genetic mapping of Ph-2, a single locus controlling partial resistance to Phytophthora infestans in tomato. Mol Plant-Micr Interact 11:259–269

    Article  CAS  Google Scholar 

  • Moreau RA, Whitaker BD, Hicks KB (2002) Phytosterols, phytostanols, and their conjugates in foods: structural diversity, quantitative analysis, and health-promoting uses. Prog Lipid Res 41:457–500

    Article  PubMed  CAS  Google Scholar 

  • Morris PF, Connolly MS, St Clair DA (2000) Genetic diversity of Alternaria alternata isolated from tomato in California assessed using RAPDs. Mycol Res 104:286–292

    Article  CAS  Google Scholar 

  • Mueller LA, Solow T, Taylor N, Skwarecki B, Buels R, Binns J, Lin C, Wright M, Ahrens R, Wang Y, Herbst E, Keyder E, Menda N, Zamir D, Tanksley SD (2005a) The SOL Genomics Network. A comparative resource for Solanaceae biology and beyond. Plant Physiol 138:1310–1317

    Article  PubMed  CAS  Google Scholar 

  • Mueller LA, Tanksley SD, Giovannoni JJ, Van Eck J, Stack S, Choi D, Kim BD, Chen M, Cheng Z, Li C, Ling H, Xue Y, Seymour G, Bishop G, Bryan G, Sharma R, Khurana J, Tyagi A, Chattopadhyay D, Singh NK, Stiekema W, Lindhout P, Jesse T, Lankhorst RK, Bouzayen M, Shibata D, Tabata S, Granell A, Botella MA, Giuliano G, Frusciante L, Causse M, Zamir D (2005b) The Tomato Sequencing Project, the first cornerstone of the International Solanaceae Project (SOL). Comp Funct Genom 6:153–158

    Article  CAS  Google Scholar 

  • Muir SR, Collins GJ, Robinson S, Hughes S, Bovy A, deVos CHR, van Tunen AJ, Verhoeyen ME (2001) Overexpression of petunia chalcone isomerase in tomato results in fruit containing increased levels of flavonols. Nat Biotechnol 19:470–474

    Article  PubMed  CAS  Google Scholar 

  • Müller CH (1940a) A revision of the genus Lycopersicon. USDA Mis Publ 382:1–28

    Google Scholar 

  • Müller CH (1940b) The taxonomy and distribution of the genus Lycopersicon. Nat Hort Mag 19:157–160

    Google Scholar 

  • Mustilli AC, Fenzi F, Ciliento R, Alfano F, Bowler C (1999) Phenotype of the tomato high pigment-2 mutant is caused by a mutation in the tomato homolog of DEETIOLATED1. Plant Cell 11:145–157

    Article  PubMed  CAS  Google Scholar 

  • Mutschler MA (2006) Combing field and laboratory methods in tomato breeding strategies. Acta Hort 724:23–27

    Google Scholar 

  • Nagai H, Siqueira WJ, Lourenção AL (1992) Tomato breeding for resistance to diseases and pests in Brazil. Acta Hort 301:91–97

    Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    Article  CAS  Google Scholar 

  • Nakatani N, Kayano S, Kikuzaki H, Sumino K, Katagiri K, Mitani T (2000) Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.). J Agric Food Chem 48:5512–5516

    Article  PubMed  CAS  Google Scholar 

  • Nardini M, Aquino MD, Tomassi G, Gentili V, Di Felice M, Scaccini C (1995) Inhibition of human low-density lipoprotein oxidation by caffeic acid and other hydroxycinnamic acid derivatives. Free Radical Bio Med 19:541–552

    Article  CAS  Google Scholar 

  • Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidopsis thaliana genetics. Plant J 14:387–392

    Article  PubMed  CAS  Google Scholar 

  • Nesbitt TC, Tanksley SD (2002) Comparative sequencing in the genus Lycopersicon: Implications for the evolution of fruit size in the domestication of cultivated tomatoes. Genetics 162:365–379

    PubMed  CAS  Google Scholar 

  • Ng PC, Henikoff S (2003) SIFT: Predicting amino acid changes that affect protein function. Nucl Acids Res 31:3812–3814

    Article  PubMed  CAS  Google Scholar 

  • Nienhuis J, Helentjaris T, Slocum M, Ruggero B, Schaefer A (1987) Restriction fragment length polymorphism analysis of loci associated with insect resistance in tomato. Crop Sci 27:797–803

    Article  Google Scholar 

  • Niggeweg R, Michael AJ, Martin C (2004) Engineering plants with increased levels of the antioxidant chlorogenic acid. Nat Biotechnol 22:746–754

    Article  PubMed  CAS  Google Scholar 

  • Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM (2001) Flavonoids: A review of probable mechanisms of action and potential applications. Am J Clin Nutr 74:418–425

    PubMed  CAS  Google Scholar 

  • Nitzany FE (1992) Cucumber mosaic virus in Israel. Phytopathol Med 14:16–20

    Google Scholar 

  • O’Connell MA, Medina AL, Sanchez Pena P, Trevino MB (2007) Molecular genetics of drought resistance response in tomato and related species. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops. vol. 2: tomato. Science Publ, Enfield, NH, USA, pp 261–283

    Google Scholar 

  • Ogundiwin EA, Berke TF, Massoudi M, Black LL, Huestis G, Choi D, Lee S, Prince JP (2005) Construction of 2 intraspecific linkagemaps and identification of resistance QTLs for Phytophthora capsici root-rot and foliar-blight diseases of pepper (Capsicum annuum L.). Genome 48:698–711

    Article  PubMed  CAS  Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1995a) Identification of RAPD markers linked to the Tm-2 locus in tomato. Theor Appl Genet 90:307–311

    Article  CAS  Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1995b) RAPD markers linked to the Tomato mosaic virus resistance gene, Tm-1, in tomato. Jpn J Genet 70:179–184

    Article  CAS  Google Scholar 

  • Ohmori T, Murata M, Motoyoshi F (1996) Molecular characterization of RAPD and SCAR markers linked to the Tm-1 locus in tomato. Theor Appl Genet 92:151–156

    Article  CAS  Google Scholar 

  • Oke M, Pinhero RG, Paliyath G (2003) The effects of genetic transformation of tomato with antisense phospholipase D cDNA on the quality characteristics of fruit and their processed products. Food Biotechnol 17:163–182

    Article  CAS  Google Scholar 

  • Oleykowski CA, Bronson Mullins CR, Godwin AK, Yeung AT (1998) Mutation detection using a novel plant endonuclease. Nucl Acids Res 26:4597–4602

    Article  PubMed  CAS  Google Scholar 

  • Olmstead RG, Palmer JD (1997) Implications for the phylogeny, classification, and biogeography of Solanum from cpDNA restriction site variation. Syst Bot 22:19–29

    Article  Google Scholar 

  • Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999) Phylogeny and provisional classification of the Solanaceae based on chloroplast DNA. In: Nee M, Symon DE, Lester RN, Jessop JP (eds) Solanaceae IV, advances in biology and utilization. Roy Bot Gard, Kew, UK, pp 111–137

    Google Scholar 

  • Omenn GS, Goodman G, Thornquist M, Grizzle J, Rosenstock L, Barnhart S, Balmes J, Cherniack MG, Cullen MR, Glass A, Keogh J, Meyskens F, Valanis B, Williams J (1994) The β-carotene and retinol efficacy trail (CARET) for chemoprevention of lung cancer in high risk populations: smokers and asbestos-exposed workers. Canc Res (suppl) 54:2038s–2043s

    CAS  Google Scholar 

  • Ori N, Eshe Y, Paran I, Presting G, Aviv D, Tanksley SD, Zamir D, Fluhr R (1997) The I2C family from the wilt disease resistance locus I2 belongs to the nucleotide binding, leucinerich repeat superfamily of plant resistance genes. Plant Cell 9:521–532

    Article  PubMed  CAS  Google Scholar 

  • Overy SA, Walker HJ, Malone S, Howard TP, Baxter CJ, Sweetlove LJ, Hill SA, Quick WP (2005) Application of metabolite profiling to the identification of traits in a population of tomato introgression lines. J Exp Bot 56:287–296

    Article  PubMed  CAS  Google Scholar 

  • Oyanedel EA (1999) Quantitative trait loci analysis of chilling tolerance intomato. PhD Dis, Cornell Univ, Ithaca, NY, USA

    Google Scholar 

  • Paiva SAR, Russell RM (1999) Beta-carotene and other carotenoids as antioxidants. J Am Coll Nutr 18:426–433

    PubMed  CAS  Google Scholar 

  • Palmer JD, Zamir D (1982) Chloroplast DNA evolution and phylogenetic relationships in Lycopersicon. Proc Natl Acad Sci USA 79:5006–5010

    Article  PubMed  CAS  Google Scholar 

  • Palmieri S, Martiniello P, Sorressi GP (1978) Chlorophyll and carotene content in high pigment and green flesh fruits. Tomato Gen Coop Rep 28:10

    Google Scholar 

  • Palukaitis P, Roossinck MJ, Dietzgen RG, Francki RIB (1992) Cucumber mosaic virus. Adv Virus Res 41:281–348

    PubMed  CAS  Google Scholar 

  • Pan Q, Liu YS, Budai-Hadrian O, Sela M, Carmel-Goren L, Zamir D, Fluhr R (2000) Comparative genetics of nucleotide binding site-leucine rich repeat resistance gene homologues in the genomes of two dicotyledons: tomato and Arabidopsis. Genetics 155:309–322

    PubMed  CAS  Google Scholar 

  • Paran I, van der Voort JR, Lefebvre V, Jahn M, Landry L, van Schriek M, Tanyolac B, Caranta C, Ben Chaim A, Livingstone K, Palloix A, Peleman J (2004) An integrated genetic linkage map of pepper. Mol Breed 13:251–261

    Article  CAS  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    Article  PubMed  CAS  Google Scholar 

  • Park S, Kim CK, Pike LM, Smith RH, Hirschi KD (2004) Increased calcium in carrots by expression of an Arabidopsis H+/Ca2+ transporter. Mol Breed 14:275–282

    Article  Google Scholar 

  • Park SH, Morris JL, Park JE, Hirschi KD, Smith RH (2003) Efficient and genotype-independent Agrobacterium-mediated tomato transformation. J Plant Physiol 160:1253–1257

    Article  PubMed  CAS  Google Scholar 

  • Parrella G, Gognalons P, Gebre-Selassiè K, Vovlas C, Marchoux G (2003) An update of the host range of Tomato spotted wilt virus. J Plant Pathol 85:227–264

    Google Scholar 

  • Parrella G, Hochu I, Gebre-Selassiè K, Gognalons P, Moretti A, Marchoux G, Caranta C (2000) Molecular tagging of the Am gene from Lycopersicon hirsutum f. glabratum PI 134417 using AFLP markers. Acta Physiol Plant 22:291–293

    CAS  Google Scholar 

  • Parrella G, Laterrot H, Gebre-Selassiè K, Marchoux G (1998) Inheritance of resistance to Alfalfa mosaic virus in Lycopersicon hirsutum f. glabratum PI 134417. J Plant Pathol 80:241–243

    Google Scholar 

  • Parrella G, Laterrot H, Marchoux G, Gebre-Selassiè K (1997) Screening Lycopersicon accessions for resistance to Alfalfa mosaic virus. J Genet Breed 51:75–78

    Google Scholar 

  • Parrella G, Moretti A, Gognalons P, Lesage M-L, Marchoux G, Gebre-Selassiè K, Caranta C (2004) The Am gene controlling resistance to Alfalfa mosaic virus in tomato is located in the cluster of dominant resistance genes on chromosome 6. Phytopathology 94:345–350

    Article  CAS  PubMed  Google Scholar 

  • Parrella G, Ruffel S, Moretti A, Morel C, Palloix A, Caranta C (2002) Recessive resistance genes against Potyviruses are localized in colinear genomic regions of the tomato (Lycopersicon spp.) and pepper (Capsicum spp.) genomes. Theor Appl Genet 105:855–861

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Damon S, Hewitt JD, Zamir D, Rabinowitch HD, Lincoln SE, Lander ES, Tanksley SD (1991) Mendelian factors underlying quantitative traits in tomato: comparison across species, generations, and environments. Genetics 127:181–197

    PubMed  CAS  Google Scholar 

  • Paterson AH, de Verna JW, Lanini B, Tanksley SD (1990) Fine mapping of quantitative trait loci using selected overlapping recombinant chromosomes, in an interspecies cross of tomato. Genetics 124:735–742

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Paterson RG, Scott SJ, Gergerich RC (1989) Resistance in two Lycopersicon species to an Arkansas isolate of Tomato spotted wilt virus. Euphytica 43:173–178

    Article  Google Scholar 

  • Paulson KN, Stevens MA (1974) Relationships among titratable acidity, pH and buffer composition of tomato fruits. J Food Sci 39:354–357

    Article  CAS  Google Scholar 

  • Pawlowski T, Grandbastien MA, Faurobert M, Mihr C, Causse M (2005) Proteomics of genetic diversity in relation to tomato fruit size. In: Mencarelli F, Tonutti P (eds) V Intl Post-harvest Symp, vol 682. ISHS, Verona, Italy, pp 285–288

    Google Scholar 

  • Pearson RC, Hall DH (1975) Factors affecting the occurrence and severity of blackmold on ripe tomato fruit caused by Alternaria alternata. Phytopathology 65:1352–1359

    Google Scholar 

  • Pecaut P (1965) Tomate: Resistance au virus de la mosaique du tabac (T.M.V.). Report of Station de’Amelioration des Plantes Maraicheres INRA, France, pp 50–53

    Google Scholar 

  • Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334

    Article  PubMed  CAS  Google Scholar 

  • Peralta IE, Knapp S, Spooner DM (2007) The taxonomy of tomatoes: a revision of wild tomatoes (Solanum section Lycopersicon) and their outgroup relatives (Solanum sections Juglandifolia and Lycopersicoides). Syst Bot Mngr (in review)

    Google Scholar 

  • Peralta IE, Knapp SK, Spooner DM (2005) New species of wild tomatoes (Solanumsection Lycopersicon: Solanaceae) from Northern Peru. Syst Bot 30:424–434

    Article  Google Scholar 

  • Peralta IE, Spooner DM (2001) Granule-bound starch synthase (GBSSI) gene phylogeny of wild tomatoes (SolanumL. section Lycopersicon [Mill.] Wettst. subsection Lycopersicon). Am J Bot 88:1888–1902

    Article  CAS  Google Scholar 

  • Peralta IE, Spooner DM (2005) Morphological characterization and relationships of wild tomatoes (Solanum L. Section Lycopersicon). In: Keating RC, Hollowell VC, Croat T (eds) Festschrift for William G. Darcy: the legacy of a taxonomist (Monograph in Systematic Botany 104). MBG Press, Missouri, USA, pp 227–257

    Google Scholar 

  • Peralta IE, Spooner DM (2007) History, origin and cultivation of tomato. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, Vol 2: tomato. Science Publ, Enfield, NH, USA, pp 1–24

    Google Scholar 

  • Perry JA, Wang TL, Welham TJ, Gardner S, Pike JM, Yoshida S, Parniske M (2003) A TILLING reverse genetics tool and a web-accessible collection of mutants of the legume Lotus japonicus. Plant Physiol 131:866–871

    Article  PubMed  CAS  Google Scholar 

  • Pertuze R, Ji Y, Chetelat R (2002) Comparative linkage map of the Solanum lycopersicoides and S. sitiens genomes and their differentiation from tomato. Genome 45:1003–1012

    Article  PubMed  CAS  Google Scholar 

  • Pestsova EG, Börner A, Röder MS (2006) Development and QTL assessment of Triticum aestivum-Aegilops tauschii introgression lines. Theor Appl Genet 112:634–647

    Article  PubMed  Google Scholar 

  • Peters JL, Van Tuinen A, Adamse P, Kendrick RE, Koornneef M (1989) High pigmentmutants of tomato exhibit high sensitivity for phytochrome action. J Plant Physiol 134:661–666

    CAS  Google Scholar 

  • Peterson D, Lapitan N, Stack S (1999) Localization of singleand low-copy sequences on tomato synaptonemal complex spreads using fluorescence in situ hybridization (FISH). Genetics 152:427–439

    PubMed  CAS  Google Scholar 

  • Peterson D, Price H, Johnston J, Stack S (1996) DNA content of heterochromatin and euchromatin in tomato (Lycopersicon esculentum) pachytene chromosomes. Genome 39:77–82

    CAS  PubMed  Google Scholar 

  • Phills BR, Provvidenti R, Robinson RW (1977) Reaction of Solanum lycopericoides to vital diseases of the tomato. Tomato Genet Coop Rep 27:18

    Google Scholar 

  • Picó B, Díez M, Nuez F (1998) Evaluation of whitefly-mediated inoculation techniques to screen Lycopersicon esculentum and wild relatives for resistance to Tomato yellow leaf curl virus. Euphytica 101:259–271

    Article  Google Scholar 

  • Picó B, Herraiz J, Riuz JJ, Nuez F (2002) Widening the genetic basis of virus resistance in tomato. Sci Hort 94:73–89

    Article  Google Scholar 

  • Pierce LC (1971) Linkage tests with Ph conditioning resistance to race 0, Phytophthora infestans. Tomato Genet Coop Rep 21:30

    Google Scholar 

  • Pierre M, Noel L, Lahaye T, Ballvora A, Veuskens J, Ganal M, Bonas U (2000) High-resolution genetic mapping of the pepper resistance locus Bs3 governing recognition of the Xanthamonas campestris pv vesicatora AvrBs3 protein. Theor Appl Genet 101:255–263

    Article  CAS  Google Scholar 

  • Pietta PG (2000) Flavonoids as antioxidants. J Nat Prod 63:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Piironen V, Lindsay DG, Miettinen TA, Toivo J, Lampi AM (2000) Plant sterols: biosynthesis, biological function and their importance to human nutrition. J Sci Food Agric 80:939–966

    Article  CAS  Google Scholar 

  • Pillen K, Ganal M, Tanksley S (1996a) Construction of a high-resolution geneticmap and YAC-contigs in the tomato Tm-2a region. Theor Appl Genet 93:228–233

    Article  CAS  Google Scholar 

  • Pillen K, Pineda O, Lewis CB, Tanksley SD (1996b) Status of genome mapping tools in the taxon Solonaceae. In: Paterson AH (ed) Genome mapping in plants. Academic Press, College Station, Texas, USA, pp 281–308

    Google Scholar 

  • Pinhero RG, Almquist KC, Novotna Z, Paliyath G (2003) Developmental regulation of phospholipase D in tomato fruits. Plant Physiol Biochem 41:223–240

    Article  CAS  Google Scholar 

  • Pitblado RE, Kerr EA (1980) Resistance to bacterial speck (Pseudomonas syringae pv. tomato) in tomato. Acta Hort 100:379–382

    Google Scholar 

  • Pitblado RE, MacNeill BH (1983) Genetic basis of resistance to Pseudomas syringae pv. tomato in field tomatoes. Can J Plant Pathol 5:251–255

    Article  Google Scholar 

  • Pitblado RE, MacNeill BH, Kerr EA (1984) Chromosomal identity and linkage relationships of Pto, a gene for resistance to Pseudomonas syringae pv. tomato. Can J Plant Pathol 6:48–53

    Article  Google Scholar 

  • Plant AL, Cohen A, Moses MS, Bray EA (1991) Nucleotide sequence and spatial expression pattern of a drought-and ABA-induced gene of tomato. Plant Physiol 97:900–906

    PubMed  CAS  Google Scholar 

  • Poonam B, Nanjappa A, Senaratna T, Midmore D (2004) Tissue culture studies of tomato (Lycopersicon esculentum). Plant Cell Tiss Org Cult 78:1–21

    Article  Google Scholar 

  • Price AH (2006) Believe it or not, QTLs are accurate! Trends Plant Sci 11:213–216

    Article  PubMed  CAS  Google Scholar 

  • Prince JP, Pochard E, Tanksley SD (1993) Construction of a molecular linkage map of pepper and a comparison of synteny with tomato. Genome 36:404–417

    CAS  PubMed  Google Scholar 

  • Rashid F, Khalid S, Ahmad I, Mughal SM (1989) Potato virus-X (PVX) resistance in tomato cultivars. Trop Pest Mng 35:357–358

    Google Scholar 

  • Rensink W, Hart A, Liu J, Ouyang S, Zismann V, Buell CR (2005) Analyzing the potato abiotic stress transcriptome using expressed sequence tags. Genome 48:598–605

    Article  PubMed  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–720

    Article  PubMed  CAS  Google Scholar 

  • Reynolds JF, Bieber NE, Sun EL (1982) Environmental, genotype and pretreatment influences on regeneration of tomato in vitro. In Vitro 18:318–322

    Google Scholar 

  • Rhee SY, Beavis W, Bernardini TZ, Chen G, Dixon D, Doyle A, Garcia-Hernandez M, Huala E, Lander G, Montoya M, Miller N, Mueller LA, Mundodi S, Reiser L, Tacklind J, Weems DC, Wu Y, Xu I, Yoo D, Yoon J, Zhang P (2003) The Arabidopsis Information Resource (TAIR): amodel organism database providing a centralized, curated gateway to Arabidopsis biology, researchmaterials and community. Nucl Acids Res 31:224–228

    Article  PubMed  CAS  Google Scholar 

  • Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335–360

    Article  PubMed  CAS  Google Scholar 

  • Rice-Evans CA, Miller NJ, Paaganga G (1997) Antioxidant properties of phenolic compounds. Trends Plant Sci 2:152–159

    Article  Google Scholar 

  • Rick CM (1956) Newmutants. Tomato Genet Coop Rep 6:22–23

    Google Scholar 

  • Rick CM (1963) Biosystematic studies on Galapagos Island tomatoes. Occ Pap Calif Acad Sci 44:59–77

    Google Scholar 

  • Rick CM (1969) Controlled introgression of chromosomes of Solanum pennellii into Lycopersicon esculentum-segregation and recombination. Genetics 62:753–768

    PubMed  CAS  Google Scholar 

  • Rick CM (1972) Further studies on segregation and recombination in backcross derivatives of a tomato species hybrid. Biol Zentralbl 91:209–220

    Google Scholar 

  • Rick CM (1973) Potential genetic resources in tomato species: clues from observation in native habitats. In: Srb AM (ed) Genes, enzymes and populations. Plenum Press, New York, pp 255–269

    Google Scholar 

  • Rick CM (1974) High soluble-solids content in large-fruited tomato lines derived from a wild green-fruited species. Hilgardia 42:493–510

    Google Scholar 

  • Rick CM (1986) Reproductive isolation in the Lycopersicon peruvianum complex. In: D’Arcy WG (ed) Solanaceae: biology and systematics. Columbia Univ Press, New York

    Google Scholar 

  • Rick CM (1995) Tomato: Lycopersicon esculentum (Solanaceae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman, Harlow, Essex, England, UK, pp 452–457

    Google Scholar 

  • Rick CM, Barton DW (1954) Cytological and genetical identification of the primary trisomics of the tomato. Genetics 39:640–666

    PubMed  CAS  Google Scholar 

  • Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382

    Google Scholar 

  • Rick CM, Chetelat RT (1995) Utilization of related wild species for tomato improvement. Acta Hort 412:21–38

    Google Scholar 

  • Rick CM, Cisneros P, Chetelat RT, DeVerna JW (1994a) Abg — A gene on chromosome 10 for purple fruit derived from S. lycopersicoides. Tomato Genet Coop Rep 44:29–30

    Google Scholar 

  • Rick CM, Deverna JW, Chetelat RT, Stevens MA (1986) Meiosis in sesquidiploid hybrids of Lycopersicon esculentum and Solanum lycopersicoides. Proc Natl Acad Sci USA 83:3580–3583

    Article  PubMed  CAS  Google Scholar 

  • Rick CM, Fobes JF (1974) Association of an allozyme with nematode resistance. Tomato Genet Coop Rep 24:25

    Google Scholar 

  • Rick CM, Fobes JF (1975) Allozyme variation in the cultivated tomato and closely related species. Bull Torrey Bot Club 102:376–384

    Article  Google Scholar 

  • Rick CM, Fobes JF (1977) Linkage relations of some isozymic loci. Tomato Genet Coop Rep 27:22–24

    Google Scholar 

  • Rick CM, Fobes JF, Holle M (1977) Genetic variation in Lycopersicon pimpinellifolium: evidence of evolutionary change in mating systems. Plant Syst Evol 127:139–170

    Article  Google Scholar 

  • Rick CM, Fobes JF, Tanksley SD (1979) Evolution of mating systems in Lycopersicon hirsutum as deduced from genetic variation in electrophoretic andmorphological characters. Plant Syst Evol 132:279–298

    Article  Google Scholar 

  • Rick CM, Holle M (1990) Andean Lycopersicon esculentum var. cerasiforme-genetic-variation and its evolutionary significance. Econ Bot 44:69–78

    Google Scholar 

  • Rick CM, Kesicki E, Fobes JF, Holle M (1976) Genetic and biosystematic studies on two new sibling speces of Lycopersicon from interandean Peru. Theor Appl Genet 47:55–68

    Article  CAS  Google Scholar 

  • Rick CM, Smith PG (1953) Novel variation in tomato species hybrids. Am Nat 87:359–373

    Article  Google Scholar 

  • Rick CM, Tanksley SD (1981) Genetic variation in Solanum pennellii-Comparisons with 2 other sympatric tomato species. Plant Syst Evol 139:11–45

    Article  Google Scholar 

  • Rick CM, Thompson AE, Brauer O (1959) Genetics anddevelopment of an unstable chlorophyll deficiency in Lycopersicon esculentum. Am J Bot 46:1–11

    Article  Google Scholar 

  • Rick CM, Uylig JW, Jones AD (1994b) High α-tomatine content in ripe fruit of Andean Lycopersicon esculentum var. cerasiforme: developmental and genetic aspects. Proc Natl Acad Sci USA 91:12877–12881

    Article  PubMed  CAS  Google Scholar 

  • Robbins ML, Angell FF (1970) Tomato anthracnose: Inheritance of reaction to Colletotrichum cocciodes in Lycopersicon spp. J Am Soc Hort Sci 95:469–471

    Google Scholar 

  • Robert VJM, West MAL, Inai S, Caines A, Arntzen, Smith KJ, St Clair, DA (2001) Marker-assisted introgression of blackmold resistance QTL alleles from wild Lycopersicon cheesmanii to cultivated tomato (L. esculentum) and evaluation of QTL phenotypic effects. Mol Breed 8:217–233

    Article  CAS  Google Scholar 

  • Robertson LD, Labate JA (2007) Genetic resources of tomato (Lycopersicon esculentum var. esculentum) and wild relatives. In: Razdan MK, Mattoo AK (eds) Genetic Improvement of Solanaceous crops. vol 2: tomato. Science Publ, Enfield, NH, USA, pp 25–75

    Google Scholar 

  • Robinson R, Tomes M (1968) Ripening inhibitor: a gene with multiple effect on ripening. Tomato Genet Coop Rep 18:36–37

    Google Scholar 

  • Rocco M, D’Ambrosio C, Arena S, Faurobert M, Scaloni A, Marra M (2006) Proteomic analysis of tomato fruits from two ecotypes during ripening. Proteomics 6:3781–3791

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez AE, Tingey WM, Mutschler MA (1993) Acylsugars of Lycopersicon pennelli deter settling and feeding of the green peach aphid (Homoptera: Aphididae). J Econ Entomol 86:34–49

    CAS  Google Scholar 

  • Rodriguez F, Wu F, Tanksley S, Spooner D (2006) A multiple single-copy gene phylogenetic analysis of wild tomatoes (Solanum L. sect. Lycopersicon (Mill.) Wettst.) and their outgroup relatives. PAA/Solanaceae Conf, July 23–27, Univ of Wisconsin, Madison, WI, USA

    Google Scholar 

  • Roessner U, Wagner C, Kopka J, Trethewey RN, Willmitzer L (2000) Technical advance: simultaneous analysis of metabolites in potato tuber by gas chromatography-mass spectrometry. Plant J 23:131–142

    Article  PubMed  CAS  Google Scholar 

  • Romer S, Fraser PD, Kiano JW, Shipton CA, Misawa N, Schuch W, Bramley PM (2000) Elevation of the provitamin A content of transgenic tomato plants. Nat Biotechnol 18:666–669

    Article  PubMed  CAS  Google Scholar 

  • Ronen G, Carmel-Goren L, Zamir D, Hirschberg J (2000) An alternative pathway to β-carotene formation in plant chromoplasts discovered by map-based cloning of Beta and old-gold color mutations in tomato. Proc Natl Acad Sci USA 97:11102–11107

    Article  PubMed  CAS  Google Scholar 

  • Ronen GL, Cohen M, Zamir D, Hirschberg J (1999) Regulation of carotenoid biosynthesis during tomato fruit development: expression of the gene for lycopene epsilon-cyclase is down-regulated during ripening and is elevated in the mutant Delta. Plant J 17:341–351

    Article  PubMed  CAS  Google Scholar 

  • Rosati C, Aquilani R, Dharmapuri S, Pallara P, Marusic C, Tavazza R, Bouvier F, Camara B, Giuliano G (2000) Metabolic engineering of beta-carotene and lycopene content in tomato fruit. Plant J 24:413–419

    Article  PubMed  CAS  Google Scholar 

  • Rose JKC, Bashir S, Giovannoni JJ, Jahn MM, Saravanan RS (2004) Tackling the plant proteome: practical approaches, hurdles and experimental tools. Plant J 39:715–733

    Article  PubMed  CAS  Google Scholar 

  • Rose TM, Henikoff JG, Henikoff S (2003) CODEHOP (COnsensus-DEgenerate Hybrid Oligonucleotide Primer) PCR primer design. Nucl Acids Res 31:3763–3766

    Article  PubMed  CAS  Google Scholar 

  • Roselius K, Stephan W, Stadler T (2005) The relationship of nucleotide polymorphism, recombination rate and selection in wild tomato species. Genetics 171:753–763

    Article  PubMed  CAS  Google Scholar 

  • Roselló S, Díez MJ, Nuez F (1998) Genetics of Tomato spotted wilt virus resistance coming from Lycopersicon peruvianum. Eur J Plant Pathol 104:499–509

    Article  Google Scholar 

  • Roselló S, Ricarte B, Díez MJ, Nuez F (2001) Resistance to Tomato spotted wilt virus introgressed from Lycopersicon peruvianum in line UPV 1 may be allelic to Sw-5 and can be used to enhance the resistance of hybrids cultivars. Euphytica 119:357–367

    Article  Google Scholar 

  • Rousseaux MC, Jones CM, Adams D, Chetelat R, Bennett A, Powel A (2005) QTL analysis of fruit antioxidants in tomato using Lycopersicon pennellii introgression lines. Theor Appl Genet 111:1396–1408

    Article  PubMed  CAS  Google Scholar 

  • Roxburgh W (1832) Flora Indica, or descriptions of Indian plants, vol. 2. W Thacker and Co, Calcutta, pp 691

    Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general user and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totona, NJ, USA, pp 365–386

    Google Scholar 

  • Ruiz H, Pavon JA (1797) Flora peruvianae, et chilensis Prodromus, sive novorum generum plantarum peruvianarum, et chilensium descriptions, et icons. edn 2. De órden del Rey, Madrid, Spain, pp 152

    Google Scholar 

  • Ryu CM, Anand A, Kang L, Mysore KS (2004) Agrodrench: a novel and effective agroinoculation method for virusinduced gene silencing in roots and diverse Solanaceous species. Plant J 40:322–331

    Article  PubMed  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Gervais L, Philouze J (2000) Efficiency of RFLP, RAPD, and AFLP markers for the construction of an intraspecific map of the tomato genome. Genome 43:29–40

    Article  PubMed  CAS  Google Scholar 

  • Saliba-Colombani V, Causse M, Langlois D, Philouze J, Buret M (2001) Genetic analysis of organoleptic quality in fresh market tomato. 1. Mapping QTLs for physical and chemical traits. Theor Appl Genet 102:259–272

    Article  CAS  Google Scholar 

  • Salmeron J, Oldroyd G, Rommens C, Scofield S, Kim H-S, Lavelle D, Dahlbeck D, Staskawicz B (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86:123–133

    Article  PubMed  CAS  Google Scholar 

  • Salvi S, Tuberosa R (2005) To clone or not to clone plant QTLs: present and future challenges. Trends Plant Sci 6:297–304

    Article  CAS  Google Scholar 

  • Samuel G, Bald JG, Pittman HA (1930) Investigations on spotted wilt of tomatoes. Aust CSIR Bull 44:1–64

    Google Scholar 

  • Sánchez Peña P (1999) Leaf water potentials in tomato (L. esculentum Mill.) L. chilense Dun. and their interspecific F1. MS Thesis, New Mexico State Univ, Las Cruces, NM, USA

    Google Scholar 

  • Sánchez Peña P, Fender SE, O’Connell MA (1995) Leaf water relations of Lycopersicon chilense during a drought cycle. Tomato Genet Coop Rep 45:40–41

    Google Scholar 

  • Sandhu JS, Krasnyanski SF, Domier LL, Korban SS, Osadjan MD, Buetow DE (2000) Oral immunization of mice with transgenic tomato fruit expressing respiratory syncytial virus-F protein induces a systemic immune response. Transgenic Res 9:127

    Article  PubMed  CAS  Google Scholar 

  • Sarfatti M, Abu-Abied M, Katan J, Zamir D (1991) RFLP mapping of I1, a new locus in tomato conferring resistance against Fusarium oxysporum f. sp. lycopersici race 1. Theor Appl Genet 82:22–26

    Article  CAS  Google Scholar 

  • Sarfatti M, Katan J, Fluhr R, Zamir D (1989) An RFLP marker in tomato linked to the Fusarium oxysporum resistance gene I2. Theor Appl Genet 78:755–759

    Article  CAS  Google Scholar 

  • Sato S, Soga T, Nishioka T, Tomita M (2004) Simultaneous determination of the main metabolites in rice leaves using capillary electrophoresis mass spectrometry and capillary electrophoresis diode array detection. Plant J 40:151–163

    Article  PubMed  CAS  Google Scholar 

  • Sawa T, Nakao M, Akaike T, Ono K, Maeda H (1999) Alkylperoxyl radical scavenging activity of various flavonoids and other phenolic compounds: Implications for the antitumor-promoter effect of vegetables. J Agric Food Chem 47:397–402

    Article  PubMed  CAS  Google Scholar 

  • Schaffer AA, Levin I, Oguz I, Petreikov M, Cincarevsky F, Yeselson Y, Shen S, Gilboa N, Bar M (2000) ADPglucose pyrophosphorylase activity and starch accumulation in immature tomato fruit: the effect of a Lycopersicon hirsutum derived introgression encoding for the large subunit. Plant Sci 152:135–144

    Article  CAS  Google Scholar 

  • Schaffer AA, Petreikov M, Miron D, Fogelman M, Spiegelman M, Bnei-Moshe Z, Shen S, Granot D, Hadas R, Dai N, Levin I, Bar M, Friedman M, Pilowsky M, Gilboa N, Chen L (1999) Modification of carbohydrate content in developing tomato fruit. HortScience 34:1024–1027

    Google Scholar 

  • Schaible L, Cannon OS, Waddoups V (1951) Inheritanceof resistance to verticillium wilt in a tomato cross. Phytopathology 41:986–990

    Google Scholar 

  • Schauer N, Fernie AR (2006) Plant metabolomics: towards biological function and mechanism. Trends Plant Sci 11:508–516

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Semel Y, Roessner U, Gur A, Balbo I, Carrari F, Pleban T, Perez-Melis A, Bruedigam C, Kopka J, Willmitzer L, Zamir D, Fernie AR (2006) Comprehensive metabolic pro-filing and phenotyping of interspecific introgression lines for tomato improvement. Nat Biotechnol 24:447–454

    Article  PubMed  CAS  Google Scholar 

  • Schauer N, Zamir D, Fernie AR (2005) Metabolic profiling of leaves and fruit of wild species tomato: a survey of the Solanum lycopersicoides complex. J Exp Bot 56:297–307

    Article  PubMed  CAS  Google Scholar 

  • Schenck PA (1851) The gardener’s text book. Boston

    Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson III JH (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100:10552–10557

    Article  PubMed  CAS  Google Scholar 

  • Schuh W, Kanczler J, Robertson D, Hobson G, Tucker G, Grierson D, Bright S, Bird C (1991) Fruit quality characteristics of transgenic tomato fruit with altered polygalacturonase activity. HortScience 26:1517–1520

    Google Scholar 

  • Scippa GS, Di Michele M, Onelli E, Patrignani G, Chiatante D, Bray EA (2004) The histone-like protein H1-S and the response of tomato leaves to water deficit. J Exp Bot 55:99–109

    Article  PubMed  CAS  Google Scholar 

  • Scippa GS, Griffiths A, Chiantante D, Bray EA (2000) The H1 histone variant of tomato, H1-S, is targeted to the nucleus and accumulates in chromatin in response to water deficit stress. Planta 211:173–181

    Article  PubMed  CAS  Google Scholar 

  • Scolnik PA, Hinton P, Greenblatt IM, Giuliano G, Delanoy MR, Spector DL, Pollock D (1987) Somatic instability of carotenoid biosynthesis in the tomato ghost mutant and its effect on plastid development. Planta 171:1–18

    Article  Google Scholar 

  • Scott J, Rebeille R, Fletcher J (2000) Folic acid and folates: the feasibility for nutritional enhancement in plant foods. J Sci Food Agric 80:795–824

    Article  CAS  Google Scholar 

  • Scott JW (2005) Perspectives on tomato disease resistance breeding; past, present and future. Acta Hort 695:217–224

    Google Scholar 

  • Scott JW, Agrama HA, Jones JP (2004) RFLP-based analysis of recombination among resistance genes to fusarium wilt races 1, 2 and 3 in tomato. J Am Soc Hort Sci 129:394–400

    CAS  Google Scholar 

  • Scott JW, Angell FF (1998) Tomato. In: Banga SS, Banga SK (eds) Hybrid cultivar development. Narosa Publ House, New Delhi, India, pp 451–475

    Google Scholar 

  • Scott JW, Gardner RG (2007) Breeding for resistance to fungal pathogens. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops, vol 2: tomato. Science Publ, Enfield, NH, USA, pp 421–456

    Google Scholar 

  • Scott JW, Jones JP (1995) Fla. 7547 and Fla. 7481 tomato breeding lines resistant to Fusariumoxysporum f. sp. lycopersici races 1, 2, and 3. HortScience 30:645–646

    Google Scholar 

  • Scott JW, Stevens MR, Olson SM (2005a) An alternative source of resistance to Tomato spotted wilt virus. Tomato Genet Coop Rep 55:40–41

    Google Scholar 

  • Scott JW, Wang JF, Hanson PM (2005b) Breeding tomatoes for resistance to bacterial wilt, a global view. Acta Hort 695:161–172

    Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M, Yamaguchi-Shinozaki K, Carninci P, Hayashizaki Y, Shinozaki K (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 13:61–72

    Article  PubMed  CAS  Google Scholar 

  • Semel Y, Nissenbaum J, Menda N, Zinder M, Krieger U, Issman N, Pleban T, Lippman Z, Gur A, Zamir D (2006) Over-dominant quantitative trait loci for yield and fitness in tomato. Proc Natl Acad Sci USA 103:12981–12986

    Article  PubMed  CAS  Google Scholar 

  • Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, Dietrich B, Ho P, Bacwaden J, Ko C, Clarke JD, Cotton D, Bullis D, Snell J, Miguel T, Hutchison D, Kimmerly B, Mitzel T, Katagiri F, Glazebrook J, Law M, Goff SA (2002) A high-throughput Arabidopsis reverse genetics system. Plant Cell 14:2985–2994

    Article  PubMed  CAS  Google Scholar 

  • Seymour GB, Manning K, Eriksson EM, Popovich AH, King GJ (2002) Genetic identification and genomic organization of factors affecting fruit texture. J Exp Bot 53:2065–2071

    Article  PubMed  CAS  Google Scholar 

  • Shahhidi F, Wanasundara PK (1992) Phenolic antioxidants. Crit Rev Food Sci Nutr 32:67–103

    Google Scholar 

  • Shapiro JA, Steffens JC, Mutschler MA (1994) Acylsugars of the wild tomato Lycopersicon pennellii in relation to geographic distribution of the species. Biochem Syst Ecol 22:545–561

    Article  CAS  Google Scholar 

  • Sherman J, Stack S (1995) 2-dimensional spreads of synaptonemal complexes from Solanaceous plants. VI. High-resolution recombination nodule map for tomato (Lycopersicon esculentum). Genetics 141:683–708

    PubMed  CAS  Google Scholar 

  • Sherman JD, Stack SM (1992) Two-dimensional spreads of synaptonemal complexes from Solanaceous plants. V. tomato (Lycopersicon esculentum) karyotype and idiogram. Genome 35:354–359

    Google Scholar 

  • Shi MM (2001) Enabling large-scale pharmacogenetic studies by high-throughput mutation detection and genotyping technologies. Clin Chem 47:164–172

    PubMed  CAS  Google Scholar 

  • Shoemaker PB, Gardner RG (1986) Resistance and fungicide application interval for tomato foliar diseases, 1985. Biol Cult Tests 1:24

    Google Scholar 

  • Sigareva M, Spivey R, Willits MG, Kramer CM, Chang YF (2004) An efficient mannose selection protocol for tomato that has no adverse effect on the ploidy level of transgenic plants. Plant Cell Rep 23:236–245

    Article  PubMed  CAS  Google Scholar 

  • Sim S-C, Yang W, van der Knaap E, Hogenhout S, Xiao H, Francis D (2007) Microarray-based SNP discovery for tomato genetics and breeding. In: Plant and Animal Genome XV Conf, San Diego, CA, USA, p 173

    Google Scholar 

  • Simko I, Costanzo S, Haynes KG, Christ BJ, Jones RW (2004a) Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theor Appl Genet 108:217–224

    Article  PubMed  CAS  Google Scholar 

  • Simko I, Haynes KG, Ewing EE, Costanzo S, Christ BJ, Jones RW (2004b) Mapping genes for resistance to Verticillium alboatrum in tetraploid and diploid potato populations using haplotype association tests and genetic linkage analysis. Mol Genet Genom 271:522–531

    Article  CAS  Google Scholar 

  • Simons G, Groenenkijk J, Wijbrandi J, Reijans M, Groenen J, Diergaard P, Vander Lee T, Bleeker M, Onstenk J, de Both M, Hring M, Mes J, Cornelissen B, Zabeau M, Vos P (1998) Dissection of the fusarium I2gene cluster in tomato reveals six homlogs and one active gene copy. Plant Cell 10:1055–1068

    Article  PubMed  CAS  Google Scholar 

  • Singer JB, Hill AE, Burrage LC, Olszens KR, Song J, Justice M, O’Brien WE, Conti DV, Witte JS, Lander ES, Nadeau JH (2004) Genetic dissection of complex traits with chromosome substitution strains of mice. Science 304:445–448

    Article  PubMed  CAS  Google Scholar 

  • Slade AJ, Fuerstenberg SI, Loeffler D, Steine MN, Facciotti D (2005) A reverse genetic, nontransgenic approach to wheat crop improvement by TILLING. Nat Biotechnol 23:75–81

    Article  PubMed  CAS  Google Scholar 

  • Slade AJ, Knauf VC (2005) TILLING moves beyond functional genomics into crop improvement. Transgenic Res 14:109–115

    Article  PubMed  CAS  Google Scholar 

  • Śmiech M, Rusinowski Z, Malepszy S, Niemirowicz-Szczytt K (2000) New RAPD markers of Tomato spotted wilt virus (TSWV) resistance in Lycopersicon esculentum Mill. Acta Physiol Plant 22:299–303

    Google Scholar 

  • Smith AF (1994) The tomato in America: early history, culture, and cookery. The Univ of South Carolina Press, Columbia, SC, pp 224

    Google Scholar 

  • Smith DL, Gross KC (2000) A family of at least seven β-galactosidase genes is expressed during tomato fruit development. Plant Physiol 123:1173–1183

    Article  PubMed  CAS  Google Scholar 

  • Smulders MJM, Bredemeijer G, Rus-Kortekaas W, Arens P, Vosman B (1997) Use of short microsatellites from database sequences to generate polymorphisms among Lycopersicon esculentum cultivars and accessions of other Lycopersicon species. Theor Appl Genet 97:264–272

    Article  Google Scholar 

  • Snyder JC, Carter CD (1985) Trichomes on leaves of Lycopersicon hirsutumand L. esculentum and their hybrids. Euphytica 34:53–64

    Article  Google Scholar 

  • Snyder JC, Johnson DA, Good DE, Weston PA (1987) Type VI trichome exudates from chemotypes of L. hirsutum and L. hirsutum f. glabratum. Tomato Genet Coop Rep 37:67–68

    Google Scholar 

  • Sobir T, Ohmori M, Murata F, Motoyoshi F (2000) Molecular characterization of the SCAR markers tightly linked to the Tm-2 locus of the genus Lycopersicon. Theor Appl Genet 101:64–69

    Article  CAS  Google Scholar 

  • Soler S, Nuez F (2000) Identificación de fuentes de resistencia en tomate al virus del mosaico del pepino dulce (PepMV). X Congreso De la Sociedad Española de Fitopatología, Valencia, Spain, p 199

    Google Scholar 

  • Soler S, Prohens J, Díez MJ, Nuez F (2002) Natural occurrence of Pepino mosaic virus in Lycopersicon species in central and southern Peru. J Phytopathol 150:49–53

    Article  CAS  Google Scholar 

  • Sommer A (1997) Vitamin A deficiency, child health, and survival. Nutrition 13:484–485

    Article  PubMed  CAS  Google Scholar 

  • Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNA evidence for the interrelationships of tomatoes, potatoes, and pepinos (Solanaceae). Am J Bot 80:676–688

    Article  CAS  Google Scholar 

  • Spooner DM, Peralta IE, Knapp S (2005) Comparisons of AFLPs with other markers for phylogenetic inference in wild tomatoes [Solanum L. section Lycopersicon (Mill.) Wettst.]. Taxon 54:43–61

    Article  Google Scholar 

  • Srinivasa Rao NK, Bhatt RM, Sadashiva AT (2000) Tolerance to water stress in tomato cultivars. Photosynthesis 38:465–467

    Article  Google Scholar 

  • Stamova BS, Chetelat RT (2000) Inheritance and genetic mapping of Cucumber mosaic virus resistance introgressed from Lycopersicon chilense into tomato. Theor Appl Genet 101:527–537

    Article  CAS  Google Scholar 

  • Stamova L (2004) Indication of dominant resistance to corky root. Proc Tomato Breeders Round Table, Annapolis, MD, USA

    Google Scholar 

  • Stamova L, Christova D, Yordanov M (1990) Resistance to Cucumber mosaic virus (CMV). Rep Tomato Genet Coop 40:33–34

    Google Scholar 

  • Stern DJ, Buttery RG, Teranishi R, Ling L, Scott K, Cantwell M (1994) Effect of storage and ripening on fresh tomato quality. Food Chem 49:225–231

    Article  CAS  Google Scholar 

  • Stevens MA (1972) Citrate and malate concentrations in tomato fruits: Genetic control and maturational effects. J Am Soc Hort Sci 97:655–658

    CAS  Google Scholar 

  • Stevens MA (1976) Inheritance of viscosity potential in tomato. J Am Soc Hort Sci 101:152–155

    Google Scholar 

  • Stevens MA (1986) Inheritance of tomato fruit quality components. In: Janick J (ed) Plant breeding reviews, vol 4. AVI Publ, Westport, CT, USA, pp 273–312

    Google Scholar 

  • Stevens MA, Paulson KN (1973) Phosphorous concentrations in tomato fruits: inheritance and maturity effects. J Am Soc Hort Sci 98:607–610

    CAS  Google Scholar 

  • Stevens MA, Rick CM (1986) Genetics and breeding. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 35–109

    Google Scholar 

  • Stevens MR (1993) Studies on inheritance of resistance to Tomato spotted wilt virus in the genus Lycopersicon. Univ of Arkansas, Fayetteville, AK, USA

    Google Scholar 

  • Stevens MR, Heiny DK, Griffiths PD, Scott JW, Rhoads DD (1996a) Identification of co-dominant RAPD markers tightly linked to the Tomato spotted wilt virus (TSWV) resistance gene Sw-5. Tomato Genet Coop Rep 46:27–28

    Google Scholar 

  • Stevens MR, Heiny DK, Rhoads DD, Griffiths PD, Scott JW (1996b) A linkage map of the Tomato spotted wilt virus resistance gene Sw-5 using isogenic lines and an interspecific cross. Acta Hort 431:385–392

    CAS  Google Scholar 

  • Stevens MR, Lamb EM, Rhoads DD (1995) Mapping the Sw-5 locus for Tomato spotted wilt virus resistance in tomatoes using RAPD and RFLP analyses. Theor Appl Genet 90:451–456

    Article  CAS  Google Scholar 

  • Stevens MR, Robbins MD (2007) Molecular markers in selection of tomato germplasm. In: Razdan MK, Mattoo AK (eds) Genetic improvement of Solanaceous crops. vol 2: tomato. Science Publ, Enfield, NH, USA, pp 239–260

    Google Scholar 

  • Stevens MR, Scott SJ, Gergerich RC (1992) Inheritance of a gene for resistance to Tomato spotted wilt virus (TSWV) from Lycopersicon peruvianum Mill. Euphytica 59:9–17

    Google Scholar 

  • Stevens R, Buret M, Duffé P, Garchery C, Baldet P, Rothan C, Causse M (2007) Candidate genes and QTLs affecting fruit ascorbic acid content in three tomato populations. Plant Physiol 143:1943–1953

    Article  PubMed  CAS  Google Scholar 

  • Stobbs LW, Poysa V, Van Schagen JG (1994) Susceptibility of cultivars of tomato and pepper to a necrotic strain of Potato virus Y. Can J Plant Pathol 16:43–48

    Google Scholar 

  • Stommel JR (1992) Enzymatic components of sucrose accumulation in the wild tomato species Lycopersicon peruvianum. Plant Physiol 99:324–328

    PubMed  CAS  Google Scholar 

  • Stommel JR (2001) USDA 97L63, 97L66, and 97L97: Tomato breeding lines with high fruit beta-carotene content. HortScience 36:387–388

    Google Scholar 

  • Stommel JR, Sinden SL (1991) Genotypic differences in shoot forming capacity of cultured leaf explants of Lycopersicon hirsutum. HortScience 26:1317–1320

    Google Scholar 

  • Stommel JR, Abbott JA, Saftner RA (2005a) USDA 02L1058 and 02L1059: Cherry tomato breeding lines with high fruit beta-carotene content. HortScience 40:1569–1570

    Google Scholar 

  • Stommel JR, Abbott JA, Saftner RA, Camp M (2005b) Sensory and objective quality attributes of beta-carotene-and lycopene-rich tomato fruit. J Am Soc Hort Sci 130:244–251

    CAS  Google Scholar 

  • Stommel JR, Haynes KG (1993) Genetic control of fruit sugar accumulation in a cross of Lycopersicon esculentum × L. hirsutum. J Am Soc Hort Sci 118:859–863

    CAS  Google Scholar 

  • Stommel JR, Haynes KG (1994) Inheritance of beta carotene content in the wild tomato species Lycopersicon cheesmanii. J Hered 85:401–404

    CAS  Google Scholar 

  • Stommel JR, Zhang Y (1998). Molecular markers linked to quantitative trait loci for anthracnose resistance in tomato. HortScience 33:514

    Google Scholar 

  • Stommel JR, Zhang Y (2001) Inheritance and QTL analysis of anthracnose resistance in the cultivated tomato (Lycopersicon esculentum). Acta Hort 542:303–310

    Google Scholar 

  • Strommer J, Gerats AGM, Sanago M, Molnar SJ, Gerats T (2000) A gene-based RFLP map of petunia. Theor Appl Genet 100:899–905

    Article  CAS  Google Scholar 

  • Strommer J, Peters J, Zethof J, de Keukeleiere P, Gerats T (2002) AFLP maps of Petunia hybrida: building maps when markers cluster. Theor Appl Genet 105:1000–1009

    Article  PubMed  CAS  Google Scholar 

  • Stubbe H (1960) Mutanten der wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill. I Die Kulturpflanze 8:110–137

    Article  Google Scholar 

  • Stubbe H (1963) Mutanten der kulturtomate Lycopersicon esculentum Miller. IV Die Kulturpflanze 11:603–644

    Article  Google Scholar 

  • Stubbe H (1965) Mutanten der wildtomate Lycopersicon pimpinellifolium (Jusl.) Mill. III. Die Kulturpflanze 13:517–544

    Article  Google Scholar 

  • Sun HJ, Uchii S, Watanabe S, Ezura H (2006) A highly efficient transformation protocol for Micro-Tom, a model cultivar for tomato functional genomics. Plant Cell Physiol 47:426–431

    Article  PubMed  CAS  Google Scholar 

  • Tadmor Y, Fridman E, Gur A, Larkov O, Lastochkin E, Ravid U, Zamir D, Lewinsohn E (2002) Identification of malodorous, a wild species allele affecting tomato aroma that was selected against during domestication. J Agric Food Chem 50:2005–2009

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Hayashi M, Goto F, Sato S, Soga T, Nishioka T, Tomita M, Kawai-Yamada M, Uchimiya H (2006) Evaluation of metabolic alteration in transgenic rice over expressing dihydroflavonol-4-reductase. Ann Bot (Lond) 98:819–825

    Article  PubMed  CAS  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha-subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Rep 1:3–8

    CAS  Google Scholar 

  • Tanksley SD (1993) Linkage map of tomato (Lycopersicon esculentum) (2 N = 24). In: O’Brien S (ed) Genetic maps: locus maps of complex genomes. Cold Spring Harbor Lab Press, Cold Spring Harbor, USA, pp 6.39–36.60

    Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD (2004) The genetic, developmental, and molecular bases of fruit size and shape variation in tomato. Plant Cell 16:S181–S189

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Bernatzky R, Lapitan NL, Prince JP (1988) Conservation of gene repertoire but not gene order in pepper and tomato. Proc Natl Acad Sci USA 85:6419–6423

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Costello W (1991) The size of the L. pennellii chromosome 7 segment containing the I − 3 gene in tomato breeding lines measured by RFLP probing. Tomato Genet Coop Rep 41:60

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, De Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Röder MS, Wing RA, Wu W, Young ND (1992) High-density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Tanksley SD, Grandillo S, Fulton TM, Zamir D, Eshed T, Pétiard V, Lopez J, Beck-Bunn T (1996) Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinnellifolium. Theor Appl Genet 92:213–224

    Article  CAS  Google Scholar 

  • Tanksley SD, Nelson JC (1996) Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor Appl Genet 92:191–203

    Article  Google Scholar 

  • Tanksley SD, Rick CM (1980) Isozymic gene linkage map of the tomato: applications in genetics and breeding. Theor Appl Genet 57:161–170

    Article  CAS  Google Scholar 

  • Taylor IB (1986) Biosystematics of the tomato. In: Atherton JG, Rudich J (eds) the tomato crop: a scientific basis for improvement. Chapman and Hall, London, pp 1–34

    Google Scholar 

  • Taylor NE, Greene EA (2003) PARSESNP: A tool for the analysis of nucleotide polymorphisms. Nucl Acids Res 31:3808–3811

    Article  PubMed  CAS  Google Scholar 

  • Tee ES (1992) Carotenoids and retinoids in human nutrition. Crit Rev Food Sci Nutr 31:103–163

    Article  PubMed  CAS  Google Scholar 

  • Thabius A, Palloix A, Pflieger S, Daubeze A-M, Caranta C, Lefebvre V (2003) Comparative mapping of Phytophthora resistance loci in pepper germplasm: evidence for conserved resistance loci across Solanaceae and for a large genetic diversity. Theor Appl Genet 106:1473–1485

    Google Scholar 

  • Thakur BR, Singh RK, Handa AK (1996) Effect of an anti-sense pectin methylesterasegene on the chemistry of pectin tomato (Lycopersicon esculentum) juice. J Agric Food Chem 44:628–630

    Article  CAS  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SY, Stitt M (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–939

    Article  PubMed  CAS  Google Scholar 

  • Thomas JE, McGrath DJ (1988) Inheritance of resistance to Potato virus Y in tomato. Aust J Agric Res 39:475–479

    Article  Google Scholar 

  • Thomas PE, Mink GI (1998) Tomato hybrids with nonspecific immunity to viral and mycoplasma pathogens of potato and tomato. HortScience 33:764–765

    Google Scholar 

  • Thompson AE, Tomes ML, Erickson HT, Wann EV, Armstrong RJ (1967) Inheritance of crimson fruit color in tomatoes. Proc Am Soc Hort Sci 91:495–504

    Google Scholar 

  • Thompson AJ, Corlett JE (1995) mRNA levels of four tomato (Lycopersicon esculentum Mill. L.) genes are related to fluctuating plant and soil water status. Plant Cell Environ 18:773–780

    Article  CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Laterrot H, Nigel G (1996a) Quantitative trait loci determining resistance to bacterial wilt in tomato cultivar Hawaii 7996. Mol Plant-Micr Interact 9:826–836

    CAS  Google Scholar 

  • Thoquet P, Olivier J, Sperisen C, Rogowsky P, Prior P, Anais G, Mangin B, Bazin B, Nazer R, Nigel G (1996b) Polygenic resistance of tomato plants to bacterial wilt in the French West Indies. Mol Plant-Micr Interact 9(9):837–842

    CAS  Google Scholar 

  • Tian F, Li de J, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Harriman RW, Ramamohan G, Handa AK (1992) An antisense pectin methylesterase gene alters pectin chemistry and soluble solids in tomato fruit. Plant Cell 4:667–679

    Article  PubMed  CAS  Google Scholar 

  • Tieman DM, Zeigler M, Schmelz EA, Taylor MG, Bliss P, Kirst M, Klee HJ (2006) Identification of loci affecting flavour volatile emissions in tomato fruits. J Exp Bot 57:887–896

    Article  PubMed  CAS  Google Scholar 

  • Tigchelaar EC, Tomes M, Kerr E, Barman R (1973) A new ripening mutant, non-ripening (nor). Tomato Genet Coop Rep 35:20

    Google Scholar 

  • Tigchelaar EC, Tomes ML (1974) ‘Caro-Rich’ tomato. HortScience 9:82

    Google Scholar 

  • Tikunov Y, Lommen A, de Vos CH, Verhoeven HA, Bino RJ, Hall RD, Bovy AG (2005) A novel approach for nontargeted data analysis for metabolomics. Large-scale profiling of tomato fruit volatiles. Plant Physiol 139:1125–1137

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Burtner C, Comai L, Henikoff S (2004) Mismatch cleavage by single-strand specific nucleases. Nucl Acids Res 32:2632–2641

    Article  PubMed  CAS  Google Scholar 

  • Till BJ, Reynolds SH, Greene EA, Codomo CA, Enns LC, Johnson JE, Burtner C, Odden AR, Young K, Taylor NE, Henikoff JG, Comai L, Henikoff S (2003) Large-scale discovery of induced point mutations with high-throughput TILLING. Genome Res 13:524–530

    Article  PubMed  CAS  Google Scholar 

  • Timms L, Jimenez R, Chase M, Lavelle D, McHale L, Kozik A, Lai Z, Heesacker A, Knapp S, Reiseberg L, Michelmore R, Kesseli R (2006) Analyses of synteny between Arabidopsis thaliana and species in the Asteraceae reveal a complex network of small syntenic segments and major chromosomal rearrangements. Genetics 173:2227–2235

    Article  PubMed  CAS  Google Scholar 

  • Tirajoh A, Aung TST, McKay AB, Plant AL (2005) Stress responsive a-dioxygenase expression in tomato roots. J Exp Bot 56:713–723

    Article  PubMed  CAS  Google Scholar 

  • Tohge T, Nishiyama Y, Hirai MY, Yano M, Nakajima J, Awazuhara M, Inoue E, Takahashi H, Goodenowe DB, Kitayama M, Noji M, Yamazaki M, Saito K (2005) Functional genomics by integrated analysis of metabolome and transcriptome of Arabidopsis plants over-expressing an MYB transcription factor. Plant J 42:218–235

    Article  PubMed  CAS  Google Scholar 

  • Tomes ML (1963) Temperature inhibition of carotene synthesis in tomato. Bot Gaz 124:180–185

    Article  CAS  Google Scholar 

  • Tomes ML, Quackenbush FW (1958) Caro-Red, a new provitamin A rich tomato. Econ Bot 12:256–260

    CAS  Google Scholar 

  • Tomes ML, Quackenbush FW, McQuistan M (1954) Modification and dominance of the gene governing formation of high concentrations of beta-carotene in the tomato. Genetics 39:810–817

    PubMed  CAS  Google Scholar 

  • Torres-Schumann S, Godoy JA, Pintor-Toro JA (1992) A probable lipid transfer protein gene is induced by NaCl in stems of tomato plants. Plant Mol Biol 18:749–757

    Article  PubMed  CAS  Google Scholar 

  • Tournefort JPD (1694) Elemens de Botanique. l’Imprimerie royale, Paris, France

    Google Scholar 

  • Treviño MB (1997) Drought-induced gene expression in plants: analysis of the non-specific lipid transfer protein gene family in the drought-to leranttomato species Lycopersiconpennellii. PhD Dis, New Mexico State Univ, USA

    Google Scholar 

  • Treviño MB, O’Connell MA (1998) Three drought-responsive members of the nonspecific lipid-transfer protein gene family in Lycopersicon pennellii show different developmental patterns of expression. Plant Physiol 116:1461–1468

    Article  PubMed  Google Scholar 

  • Triano SR, St Clair DA (1995) Processing tomato germplasm with improved fruit soluble solids content. HortScience 30:1477–1478

    Google Scholar 

  • Tsugane T, Watanabe M, Yano K, Sakuari N, Suzuki H, Shibata D (2005) Expressed sequence tags of full-length cDNA clones from the miniature tomato (Lycopersicon esculentum) cultivar Micro-Tom. Plant Biotechnol J 22:161–165

    CAS  Google Scholar 

  • Turkensteen LJ (1973) Partial resistance of tomato against Phytophthora infestans, the late blight fungus. Center Agric Publ Docum, Wageningen, The Netherlands

    Google Scholar 

  • Twell D, Wing R, Yamaguchi J, McCormick S (1989) Isolation and expression of an anther-specific gene from tomato. Mol Gen Genet 217:240–245

    Article  PubMed  CAS  Google Scholar 

  • Uddin MR, Berry SZ, Bisges AD (1988) An improved shoot regeneration system for somaclone production in tomatoes. HortScience 23:1062–1064

    Google Scholar 

  • Unlu Z, Clinton SK, Schwartz SJ (2003) Absorption of lycopene isomers following single meals containing tomato sauces with varying isomer patterns. FASEB J 17: Abstr No 456.9

    Google Scholar 

  • Urbanczyk-Wochniak E, Luedemann A, Kopka J, Selbig J, Roessner-Tunali U, Willmitzer L, Fernie AR (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993

    Article  PubMed  CAS  Google Scholar 

  • Urbanczyk-Wochniak E, Usadel B, Thimm O, Nunes-Nesi A, Carrari F, Davy M, Blasing O, Kowalczyk M, Weicht D, Polinceusz A, Meyer S, Stitt M, Fernie AR (2006) Conversion of MapMan to allow the analysis of transcript data from Solanaceous species: effects of genetic and environmental alterations in energy metabolism in the leaf. Plant Mol Biol 60:773–792

    Article  PubMed  CAS  Google Scholar 

  • USDA (2002) Nutritive value of foods. Home and Garden Bulletin 72

    Google Scholar 

  • USDA-ERS (2003) U.S. Tomato Statistics, 1960–2002. USDA Economic Research Service. http://usda.mannlib.cornell.edu/MannUsda/viewDocumentInfo.do?documentID=1210

    Google Scholar 

  • USDA-ERS (2006) Tomatoes at a glance. USDA-Economic Research Service. http://www.ers.usda.gov/Briefing/Tomatoes/

    Google Scholar 

  • USDA-FAS (2005) The U.S. and world situation: fresh and processed tomatoes. USDA Foreign Agricultural Service, Horticultural & Tropical Products Division. http://www.fas.usda.gov/htp

    Google Scholar 

  • Vakalounakis DJ (1988) The genetic analysis of resistance to fusarium crown and root rot of tomato. Plant Pathol 37:71–73

    Article  Google Scholar 

  • Vakalounakis DJ, Laterrot H, Moretti A, Ligoxigakis K, Smardas K (1997) Linkage between Fr1 (Fusarium oxysporum f. sp radicis-lycopersici resistance) and Tm-2 (tobacco mosaic virus resistance-2) loci in tomato (Lycopersicon esculentum). Ann Appl Biol 130:319–323

    Google Scholar 

  • Vallejos C, Tanksley S, Bernatzky R (1986) Localization in the tomato genome of DNA restriction fragments containing sequences homologous to the ribosomal-RNA (45-S), the major chlorophyll-A/B binding polypeptide and the ribulose bisphosphate carboxylase genes. Genetics 112:93–105

    PubMed  CAS  Google Scholar 

  • Van der Beek JG, Pet G, Lindhout P (1994) Resistance to powdery mildew (Oidium lycopersicon) in Lycopersicon hirsutum is controlled by an incompletely-dominant gene Ol-1 on chromosome-6. Theor Appl Genet 89:467–473

    Article  Google Scholar 

  • van der Biezen EA, Glagotskaya T, Overduin B, Nijkamp HJJ, Hille J (1995) Inheritance and genetic mapping of resistance to Alternaria alternata f. sp. lycopersici from Lycopersicon pennellii. Mol Gen Genet 247:453–461

    Article  PubMed  Google Scholar 

  • Van der Hoeven R, Ronning C, Giovannoni J, Martin G, Tanksley S (2002) Deductions about the number, organization and evolution of genes in the tomato genome based on analysis of a large expressed sequence tag collection and selective genomic sequencing. Plant Cell 14:1441–1456

    Article  PubMed  Google Scholar 

  • Van der Hoeven RS, Monforte AJ, Breeden D, Tanksley SD, Steffens JC (2000) Genetic control and evolution of sesquiterpene biosynthesis in Lycopersicon esculentum and L. hirsutum. Plant Cell 12:2283–2294

    Article  Google Scholar 

  • van der Knaap E, Lippman ZB, Tanksley SD (2002) Extremely elongated tomato fruit controlled by four quantitative trait loci with epistatic interactions. Theor Appl Genet 104(2–3):241–247

    Article  Google Scholar 

  • van der Knaap E, Tanksley SD (2003) The making of a bell pepper-shaped tomato fruit: identification of loci controlling fruit morphology in Yellow Stuffer tomato. Theor Appl Genet 107:139–147

    PubMed  Google Scholar 

  • van der Vlugt RAA, Stijger CCMM, Verhoeven JTJ, Lesemann DE (2000) First report of Pepino mosaic virus on tomato. Plant Dis 84:103

    Article  Google Scholar 

  • Van Deynze A, van der Knaap E, Francis D (2006) Development and application of an informative set of anchored markers for tomato breeding. In: Plant and Animal Genome XIV Conf, San Diego, CA, USA, P188

    Google Scholar 

  • Van Eck J, Kirk DD, Walmsley AM (2006) Tomato (Lycopersicon esculentum). In: Wang K (ed) Methods in molecular biology: Agrobacterium protocols, vol 343. Humana Press, Totowa, NJ, USA, pp 459–473

    Google Scholar 

  • van Heusden AW, Koornneef M, Voorrips RE, Brüggemann W, Pet G, Vrielink-van Ginkel R, Chen X, Lindhout P (1999) Three QTLs from Lycopersicon peruvianum confer a high level of resistance to Clavibacter michiganensis ssp. michiganensis. Theor Appl Genet 99:1068–1074

    Article  Google Scholar 

  • Van Ooijen J, Sandbrink J, Vrielink M, Verkerk R, Zabel P, Lindhout P (1994) An RFLP linkage map of Lycopersicon peruvianum. Theor Appl Genet 89:1007–1013

    Article  Google Scholar 

  • van Os H, Andrzejewski S, Bakker E, Barrena I, Bryan GJ, Caromel B, Ghareeb B, Isidore E, de Jong W, van Koert P, Lefebvre V, Milbourne D, Ritter E, van der Voort JN, Rousselle-Bourgeois F, van Vliet J, Waugh R, Visser RG, Bakker J, van Eck HJ (2006) Construction of a 10,000-marker ultradense genetic recombination map of potato: providing a framework for accelerated gene isolation and a genome-wide physical map. Genetics 173:1075–1087

    Article  PubMed  CAS  Google Scholar 

  • van Roekel JSC, Damm B, Melchers LS, Hoekma A (1993) Factors influencing transformation frequency of tomato (Lycopersicon esculentum). Plant Cell Rep 12:644–647

    Article  Google Scholar 

  • van Tuinen A, Cordonnier-Pratt M, Pratt LH, Verkerk R, Zabel P, Koornneef M (1997) The mapping of phytochrome genes and photomorphogenic mutants of tomato. Theor Appl Genet 94:115–122

    Article  PubMed  Google Scholar 

  • van Zijl JJB, Bosch SE, Coetzee CPJ (1986) Breeding tomatoes for processing in South Africa. Acta Hort 194:69–75

    Google Scholar 

  • Villalta I, Reina-Sanchez A, Cuartero J, Carbonell EA, Asins MJ (2005) Comparative microsatellite linkage analysis and genetic structure of two populations of F6 lines derived from Lycopersicon pimpinellifolium and L. cheesmanii. Theor Appl Genet 110:881–894

    Article  PubMed  CAS  Google Scholar 

  • Vinson JA, Hao Y, Su X, Zubik L (1998) Phenol antioxidant quantity and quality in foods: Vegetables. J Agric Food Chem 46:3630–3634

    Article  CAS  Google Scholar 

  • von Korff M, Wang H, Léon J, Pillen K (2004) Development of candidate introgression lines using an exotic barley accession (Hordeum vulgare ssp. spontaneum) as donor. Theor Appl Genet 109:1736–1745

    Article  CAS  Google Scholar 

  • Vos P, Simons G, Jesse T, Wijbrandi J, Heinen L, Hogers R, Frijters A, Groenendijk J, Diergaarde P, Reijans M, Fierens Onstenk J, de Both M, Peleman J, Liharska T, Hontelez J, Zabeau M (1998) The tomato Mi-1 gene confers resistance to both root-knot nematodes and potato aphids. Nat Biotechnol 16:1365–1369

    Article  PubMed  CAS  Google Scholar 

  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J (2002) A MADS-box gene necessary for fruit ripening at the tomato ripening inhibitor (Rin) locus. Science 296:343–346

    Article  PubMed  CAS  Google Scholar 

  • Walley C, Seymour G (2006) Investigating the polygenic nature of texture traits in tomato fruit. VI Intl Solanaceae Conf, Univ of Wisconsin, Madison, WI, USA

    Google Scholar 

  • Walmsley AM, Alvarez ML, Jin Y, Kirk DD, Lee SM, Pinkhasov J, Rigano MM, Arntzen CJ, Mason HS (2003) Expression of the B subunit of Escherichia coli heat-labile enterotoxin as a fusion protein in transgenic tomato. Plant Cell Rep 21:1020–1026

    Article  PubMed  CAS  Google Scholar 

  • Wang CL, Xing JS, Chin CK, Ho CT, Martin CE (2001) Modification of fatty acids changes the flavor volatiles in tomato leaves. Phytochemistry 58:227–232

    Article  PubMed  CAS  Google Scholar 

  • Wang J-F, Olivier J, Thoquet P, Mangin B, Sauviac L, Grimsley NH (2000) Resistance of tomato line Hawaii 7996 to Ralstonia solanacearum Pss4 in Taiwan is controlled mainly by a major strain-specific locus. Mol Plant-Micr Interact 13:6–13

    Article  CAS  Google Scholar 

  • Wang Y, Tang X, Cheng Z, Mueller L, Giovannoni J, Tanksley SD (2006) Euchromatin and pericentromeric heterochromatin: Comparative composition in the tomato genome. Genetics 172:2529–2540

    Article  PubMed  CAS  Google Scholar 

  • Warnock SJ (1988) A review of taxonomy and phylogeny of the genus Lycopersicon. HortScience 23:669–673

    Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    Article  PubMed  CAS  Google Scholar 

  • Watterson JC (1986) Diseases. In: Atherton JG, Rudich J (eds) The tomato crop: a scientific basis for improvement. Chapman and Hall, London, UK, pp 35–109

    Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci USA 99:14903–14906

    Article  PubMed  CAS  Google Scholar 

  • Wei T, O’Connell MA (1996) Structure and characterization of a putative drought-inducible H1 histone gene. Plant Mol Biol 30:255–268

    Article  PubMed  CAS  Google Scholar 

  • Weide R, van Wordragen MF, Lankhorst RK, Verkerk R, Hanhart C, Liharska T, Pap E, Stam P, Zabel P, Koornneef M (1993) Integration of the classical and molecular linkage maps of tomato chromosome 6. Genetics 135:1175–1186

    PubMed  CAS  Google Scholar 

  • Weimer J (1999) Chapter 19: Accelerating the trend toward healthy eating: Public and private efforts. In: Frazao E (ed) America’s eating habits: changes and consequences. Agric Info Bull 750, USDA/ERS, pp 385–401

    Google Scholar 

  • Weston PA, Johnson DA, Burton HT, Snyder JC (1989) Trichome secretion composition, trichome densities, and spider mite resistance of ten accessions of Lycopersicon hirsutum. J Am Soc Hort Sci 114:492–498

    Google Scholar 

  • Weston PA, Snyder JC (1990) Thumbtack bioassay: a quick method of measuring plant resistance to two-spotted spider mites (Acari: Tetranychidae). J Econ Entomol 83:501–504

    Google Scholar 

  • Wheeler D, Church D, Edgar R, Federhen S, Helmberg W, Madden T, Pontius J, Schuler G, Schriml L, Sequeira E, Suzek T, Tatusova T, Wagner L (2004) Database resources of the National Center for Biotechnology Information: update. Nucl Acids Res 32:D35–D40

    Article  PubMed  CAS  Google Scholar 

  • Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W, Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST, Sirotkin K, Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova TA, Wagner L, Yaschenko E (2006) Database resources of the National Center for Biotechnology Information. Nucl Acids Res 34:D173–D180

    Article  PubMed  CAS  Google Scholar 

  • Wheeler GL, Jones MA, Smirnoff N (1998) The biosynthetic pathway of vitamin C in higher plants. Nature 393:365–369

    Article  PubMed  CAS  Google Scholar 

  • Whitaker BD, Smith DL, Green KC (2001) Cloning, characterization and functional expression of a phospholipase Dα cDNA from tomato fruit. Physiol Plant 112:87–94

    Article  PubMed  CAS  Google Scholar 

  • Whitfield AE, Ullman DE, German TL (2005) Tospovirus-thrips interactions. Annu Rev Phytopathol 43:459–489

    Article  PubMed  CAS  Google Scholar 

  • Wienholds E, Schulte-Merker S, Walderich B, Plasterk RH (2002) Target-selected inactivation of the zebrafish rag1 gene. Science 297:99–102

    Article  PubMed  CAS  Google Scholar 

  • Wikström N, Savolainen V, Chase MW ((2001) Evolution of the angiosperms: calibrating the family tree. Proc Roy Soc Lond Ser B Biol Sci 268:2211–2220

    Article  Google Scholar 

  • Wilkinson JQ, Lanahan MB, Yen HC, Giovannoni JJ, Klee HJ (1995) An ethylene-inducible component of signal-transduction encoded by Never-Ripe. Science 270:1807–1809

    Article  PubMed  CAS  Google Scholar 

  • Williams WG, Kennedy GG, Yamamoto ET, Thacker JD, Borner J (1980) 2-Tridecanone-a naturally occurring insecticide from the wild tomato Lycopersicon hirsutum f. glabratum. Science 207:888–889

    Article  CAS  PubMed  Google Scholar 

  • Willits MG, Kramer CM, Prata RTN, De Luca V, Potter BG, Steffens JC, Graser G (2005) Utilization of the genetic resources of wild species to create a nontransgenic high flavonoid tomato. J Agric Food Chem 53:1231–1236

    Article  PubMed  CAS  Google Scholar 

  • Witsenboer HMA, van de Griend EG, Tiersma JB, Nijkamp HJJ, Hille J (1989) Tomato resistance to alternaria stem canker: localization in host genotypes and functional expression compared to non-host resistance. Theor Appl Genet 78:457–462

    Article  Google Scholar 

  • World Health Organization (2005) Vitamin A. 6 May, 2005. http://www.who.int/vaccines/en/vitaminamain.shtml

    Google Scholar 

  • Wu F, Mueller LA, Crouzillat D, Petiard V, Tanksley SD (2006) Combining bioinformatics and phylogenetics to identify large sets of single copy, orthologous genes (COSII) for comparative, evolutionnary and systematics studies: a test case in the Euasterid plant clade. Genetics 174:1407–1420

    Article  PubMed  CAS  Google Scholar 

  • Wu JL, Wu C, Lei C, Baraoidan M, Bordeos A, Madamba MR, Ramos-Pamplona M, Mauleon R, Portugal A, Ulat VJ, Bruskiewich R, Wang G, Leach J, Khush G, Leung H (2005) Chemical-and irradiation-induced mutants of indica rice IR64 for forward and reverse genetics. Plant Mol Biol 59:85–97

    Article  PubMed  CAS  Google Scholar 

  • Xiaong AS, Yao QH, Peng R, Li X, Han PL, Fan HQ (2005) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

    Article  CAS  Google Scholar 

  • Xu P, Rogers SJ, Roossinck MJ (2004) Expression of antiapoptotic genes bcl-xL and ced-9 in tomato enhances tolerance to viral-induced necrosis and abiotic stress. Proc Natl Acad Sci USA 101:15805–15810

    Article  PubMed  CAS  Google Scholar 

  • Yakovleff E, Herrera FL (1935) El mundo vegetal de los antiguos peruanos. Revista del Museo Nacional 3. Botánica etnológica, tomo 3, no3:55. Lima

    Google Scholar 

  • Yamamoto N, Tsugane T, Watanabe M, Yano K, Maeda F, Kuwata C, Torki M, Ban Y, Nishimura S, Shibata D (2005) Expressed sequence tags from the laboratory-grown miniature tomato (Lycopersicon esculentum) cultivar Micro-Tomand mining for single nucleotide polymorphisms and insertions/deletions in tomato cultivars. Gene 356:127–134

    Article  PubMed  Google Scholar 

  • Yang W, Bai X, Kabelka E, Eaton C, Kamoun S, van der Knaap E, Francis D (2004) Discovery of single nucleotide polymorphisms in Lycopersicon esculentum by computer aided analysis of expressed sequence tags. Mol Breed 14:21–34

    Article  CAS  Google Scholar 

  • Yang W, Miller SA, Francis DM, Scott JW, Jones JB (2005a) Mining tomato genome sequence databases for molecular markers: application to bacterial resistance and marker assisted selection. Acta Hort 695:241–249

    Google Scholar 

  • Yang W, Sacks EJ, Lewis Ivey ML, Miller SA, Francis DM (2005b) Resistance in Lycopersicon esculentum intraspecific crosses to race T1 strains of Xanthomonas campestris pv. vesicatoria causing bacterial spot of tomato. Phytopathology 95:519–527

    Article  CAS  PubMed  Google Scholar 

  • Yano K, Watanabe M, Yamamoto N, Tsugane T, Aoki K, Sakurai N, Shibata D (2006) MiBASE: a database of a miniature tomato cultivar Micro-Tom. Plant Biotechnol 23:195–198

    CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y, Sasaki T (2000). Hdl, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2484

    Article  PubMed  CAS  Google Scholar 

  • Yates HE, Frary A, Doganlar S, Frampton A, Eannetta NT, Uhlig J, Tanksley SD (2004) Comparative fine mapping of fruit quality QTLs on chromosome 4 introgressions derived from two wild species. Euphytica 135:283–296

    Article  CAS  Google Scholar 

  • Yelle S, Chetelat RT, Dorais M, DeVerna JW, Bennett AB (1991) Sink metabolism in tomato fruit. IV. Genetic and biochemical analysis of sucrose accumulation. Plant Physiol 95:1026–1035

    Article  PubMed  CAS  Google Scholar 

  • Yen HC, Shelton BA, Howard LR, Lee S, Vrebalov J, Giovannoni J (1997) The tomato high-pigment (hp) locusmaps to chromosome 2 and influences plastome copy number and fruit quality. Theor Appl Genet 95:1069–1079

    Article  CAS  Google Scholar 

  • Yesbergenova Z, Yang G, Oron E, Soffier D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and anthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876

    Article  PubMed  CAS  Google Scholar 

  • Yi G, Lee IM, Lee S, Choi D, Kim B-D (2006) Exploitation of pepper EST-SSRs and an SSR-based linkage map. Theor Appl Genet 114:113–130

    Article  PubMed  CAS  Google Scholar 

  • Yordanov M, Stamova L, Stoyanova Z (1975) Leveillula taurica resistance in the tomato. Rep Tomato Genet Coop 25:24

    Google Scholar 

  • Young ND (1999) A cautiously optimistic vision for marker-assisted breeding. Mol Breed 5:505–510

    Article  Google Scholar 

  • Young ND, Miller JC, Tanksley SD (1987) Rapid chromosomal assignment of multiple genomic clones in tomato using primary trisomics. Nucl Acids Res 15:9339–9348

    Article  PubMed  CAS  Google Scholar 

  • Young ND, Zamir D, Ganal MW, Tanksley SD (1988) Use of isogenic lines and simultaneous probing to identify DNA markers tightly linked to the Tm-2 a gene in tomato. Genetics 120:579–585

    PubMed  CAS  Google Scholar 

  • Young PA (1956) ry, A modifier gene for red color in yellow tomato fruit. Tomato Genet Coop Rep 6:33

    Google Scholar 

  • Yousef GG, Juvik JA (2001) Evaluation of breeding utility of a chromosomal segment from Lycopersicon chmielewskii that enhances cultivated tomato soluble solids. Theor Appl Genet 103:1022–1027

    Article  CAS  Google Scholar 

  • Yu L-X, Chamberland H, Lafontaine JG, Tabaeizadeh Z (1996) Negative regulation of gene expression of a novel proline-, threonine-, and glycine-rich protein by water stress in Lycopersicon chilense. Genome 39:1185–1193

    Article  PubMed  CAS  Google Scholar 

  • Yu ZH, Wang JF, Stallt RE, Vallejos CE (1995) Genomic localization of tomato genes that control a hypersensitive reaction to Xanthomonas campestris pv. vesicatoria (Doidge) Dye. Genetics 141:675–682

    PubMed  CAS  Google Scholar 

  • Zamir D (2001) Improving plant breeding with exotic genetic libraries. Nat Rev Genet 2:983–989

    Article  PubMed  CAS  Google Scholar 

  • Zamir D, Eshed Y (1998) Tomato genetics and breeding using nearly isogenic introgression lines derived from wild species. In: Paterson AH (ed) Molecular dissection of complex traits. CRC Press, NY, USA, pp 207–217

    Google Scholar 

  • Zamir D, Ekstein-Michelson I, Zakay Y, Navot N, Zeidan M, Sarfatti M, Eshed Y, Harel E, Pleban T, van-Oss H, Kedar N, Rabinowitch HD, Czosnek H (1994) Mapping and introgression of a Tomato yellow leaf curl virus tolerance gene, Ty-1. Theor Appl Genet 88:141–146

    Article  CAS  Google Scholar 

  • Zeng ZB (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zhang GF, Maudens KE, Storozhenko S, Mortier KA, Van Det Straeten D, Lambert WE (2003) Determination of total folate in plant material by chemical conversion into para-aminobenzoic acid followed by high performance liquid chromatography combined with on-line postcolumn derivatization and fluorescence detection. J Agric Food Chem 51:7872–7878

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Lin GY, Nino-Liu DO, Foolad MR (2003) Mapping QTLs conferring early blight (Alternaria solani) resistance in a Lycopersicon esculentum × L. hirsutum cross by selective genotyping. Mol Breed 12:3–19

    Article  CAS  Google Scholar 

  • Zhang LP, Khan A, Nino-Liu D, Foolad MR (2002) A molecular linkage map of tomato displaying chromosomal locations of resistance gene analogs based on a Lycopersicon esculentum × Lycopersicon hirsutum cross. Genome 45:133–146

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (Mo B), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicon esculentum Mill.). Theor Appl Genet 100:368–375

    Article  CAS  Google Scholar 

  • Zhong X, Fransz P, van Wennekes E, Zabel P, van Kammen A, de Jong J (1996) High-resolution mapping on pachytene chromosomes and extended DNA fibres by fluorescence in-situ hybridisation. Plant Mol Biol Rep 14:232–242

    CAS  Google Scholar 

  • Ziegler RG (1989) A review of epidemiological evidence that carotenoids reduce the risk of cancer. J Nutr 119:116–122

    PubMed  CAS  Google Scholar 

  • Zitter TA, Jones JB, Jones JP, Stall RE (1991) Diseases caused by viruses. APS Press, St. Paul, MN, USA

    Google Scholar 

  • Zou L, Li H, Ouyang B, Zhang J, Ye Z (2006) Cloning and mapping of genes involved in tomato ascorbic acid biosynthesis and metabolism. Plant Sci 170:120–127

    Article  CAS  Google Scholar 

  • Zscheile FP, Lesley JW (1967) Pigment analysis of sherry: Flesh color mutation resembling yellow in the tomato. J Hered 58:193–194

    Google Scholar 

  • Zygier S, Ben Chaim A, Efrati A, Kaluzky G, Borovsky Y, Paran I (2005) QTL mapping for fruit size and shape in chromosomes 2 and 4 in pepper and a comparison of the pepper QTL map with that of tomato. Theor Appl Genet 111:437–444

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Labate, J.A. et al. (2007). Tomato. In: Kole, C. (eds) Vegetables. Genome Mapping and Molecular Breeding in Plants, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-34536-7_1

Download citation

Publish with us

Policies and ethics