Skip to main content

Adenosine and ATP Receptors

  • Chapter
Analgesia

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 177))

Abstract

Adenosine and ATP, via P1 and P2 receptors respectively, can modulate pain transmission under physiological, inflammatory, and neuropathic pain conditions. Such influences reflect peripheral and central actions and effects on neurons as well as other cell types. In general, adenosine A1 receptors produce inhibitory effects on pain in a number of preclinical models and are a focus of attention. In humans, i.v. infusions of adenosine reduce some aspects of neuropathic pain and can reduce postoperative pain. For P2X receptors, there is a significant body of information indicating that inhibition of P2X3 receptors may be useful for relieving inflammatory and neuropathic pain. More recently, data have begun to emerge implicating P2X4, P2X7 and P2Y receptors in aspects of pain transmission. Both P1 and P2 receptors may represent novel targets for pain relief.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbracchio MP, Boeynaesm JM, Barnard EA, et al (2003) Characterization of the UDP-glucose receptor (renamed here the P2Y14 receptor) adds diversity to the P2Y receptor family. Trends Pharmacol Sci 24:52–55

    Article  PubMed  CAS  Google Scholar 

  • Abo-Salem OM, Hayallah AM, Bilkei-Gorso A, et al (2004) Antinociceptive effects of novel A2B adenosine receptor antagonists. J Pharmacol Exp Ther 308:358–366

    Article  PubMed  CAS  Google Scholar 

  • Ackley MA, Governo RJM, Cass CE, et al (2003) Control of glutamatergic neurotransmission in the rat spinal dorsal horn by the nucleoside transporter ENT1. J Physiol 548:507–517

    Article  PubMed  CAS  Google Scholar 

  • Aley KO, Levine JD (1997) Multiple receptors involved in peripheral α2, μ and A1 antinociception, tolerance, and withdrawal. J Neurosci 17:735–74

    PubMed  CAS  Google Scholar 

  • Aley KO, Green PG, Levine JD (1995) Opioid and adenosine peripheral antinociception are subject to tolerance and withdrawal. J Neurosci 15:8031–8038

    PubMed  CAS  Google Scholar 

  • Aumeerally N, Allen G, Sawynok J (2004) Glutamate-evoked release of adenosine and regulation of peripheral antinociception. Neuroscience 127:1–11

    Article  PubMed  CAS  Google Scholar 

  • Bailey A, Ledent C, Kelly M, et al (2002) Changes in spinal δ and κ systems in mice deficient in the A2A receptor gene. J Neurosci 22:9210–9220

    PubMed  CAS  Google Scholar 

  • Bantel C, Childers SR, Eisenach JC (2002a) Role of adenosine receptors in spinal G-protein activation after peripheral nerve injury. Anesthesiology 96:1443–1449

    Article  PubMed  CAS  Google Scholar 

  • Bantel C, Tobin JR, Li X, et al (2002b) Intrathecal adenosine following spinal nerve ligation in rat. Short residence time in cerebrospinal fluid and no change in A1 receptor binding. Anesthesiology 96:103–108

    Article  PubMed  CAS  Google Scholar 

  • Bantel C, Li X, Eisenach JC (2003) Intraspinal adenosine induces spinal cord norepinephrine release in spinal nerve-ligated rats but not in normal or sham controls. Anesthesiology 98:1461–1466

    Article  PubMed  CAS  Google Scholar 

  • Barclay J, Patel S, Dorn G, et al (2002) Functional downregulation of P2X3 receptor subunit in rat sensory neurons reveals a significant role in chronic neuropathic and inflammatory pain. J Neurosci 22:8139–8147

    PubMed  CAS  Google Scholar 

  • Bastia E, Varani K, Manopoli A, et al (2002) Effects of A1 and A2A adenosine receptor ligands in mouse acute models of pain. Neurosci Lett 328:241–244

    Article  PubMed  CAS  Google Scholar 

  • Belfrage M, Sollevi A, Segerdahl M, et al (1995) Systemic adenosine infusion alleviates spontaneous and stimulus evoked pain in patients with neuropathic pain. Anesth Analg 81:713–717

    Article  PubMed  CAS  Google Scholar 

  • Belfrage M, Segerdahl M, Arnér S, et al (1999) The safety and efficacy of intrathecal adenosine in patients with chronic neuropathic pain. Anesth Analg 89:136–142

    Article  PubMed  CAS  Google Scholar 

  • Berrendero F, Castañé A, Ledent C, et al (2003) Increase of morphine withdrawal in mice lacking A2A receptors and no changes in CB1/A2A double knockout mice. Eur JNeurosci 17:315–324

    Article  Google Scholar 

  • Carruthers AM, Sellers LA, Jenkins DW, et al (2001) Adenosine A1 receptor-mediated inhibition of protein kinase A-induced calcitonin gene-related peptide release from rat trigeminal neurons. Mol Pharmacol 59:1533–1541

    PubMed  CAS  Google Scholar 

  • Chen Y, Zhang YH, Zhao ZQ (2001) Novel purinergic sensitivity develops in injured sensory axons following sciatic nerve transection in rat. Brain Res 911:168–172

    Article  PubMed  CAS  Google Scholar 

  • Chessell IP, Hatcher JP, Bountra C, et al (2005) Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain. Pain 114:386–396

    Article  PubMed  CAS  Google Scholar 

  • Cronstein BN (1998) Adenosine and its receptors during inflammation. In: Serhan CN, Ward PA (eds) Molecular and cellular basis of inflammation. Humana Press, Totowa, pp 259–274

    Google Scholar 

  • Dai Y, Fukuoka T, Wang H, et al (2004) Contribution of sensitized P2X receptors in in-flamed tissue to the mechanical hypersensitivity revealed by phosphorylated ERK in DRG neurons. Pain 108:258–266

    Article  PubMed  CAS  Google Scholar 

  • Dell’Antonio G, Quattrini A, Cin ED, et al (2002a) Relief of inflammatory pain in rats by local use of the selective P2X7 ATP receptor inhibitor, oxidized ATP. Arthritis Rheum 46:3378–3385

    Article  PubMed  CAS  Google Scholar 

  • Dell’Antonio G, Quattrini A, Dal CE, et al (2002b) Antinociceptive effect of a new P2Z/P2X7 antagonist, oxidized ATP, in arthritic rats. Neurosci Lett 327:87–90

    Article  PubMed  CAS  Google Scholar 

  • Deuchars SA, Atkinson L, Brooke RE, et al (2001) Neuronal P2X7 receptors are targeted to presynaptic terminals in the central and peripheral nervous systems. J Neurosci 21:7143–7152

    PubMed  CAS  Google Scholar 

  • Dickenson AH, Suzuki R, Reeve AJ (2000) Adenosine as a potential analgesic target in inflammatory and neuropathic pains. CNS Drugs 13:77–85

    Article  CAS  Google Scholar 

  • Doak GJ, Sawynok J (1995) Complex role of peripheral adenosine in the genesis of the response to subcutaneous formalin in the rat. Eur J Pharmacol 281:311–318

    Article  PubMed  CAS  Google Scholar 

  • Dorn G, Patel S, Wotherspoon G, et al (2004) siRNA relieves chronic neuropathic pain. Nucleic Acids Res 32:e40

    Article  CAS  Google Scholar 

  • Dowd E, McQueen DS, Chessell IP, et al (1998) P2X receptor-mediated excitation of nociceptive afferents in the normal and arthritic rat knee joint. Br J Pharmacol 125:341–346

    Article  PubMed  CAS  Google Scholar 

  • Eisenach JC, Hood DD, Curry R (2002) Preliminary efficacy assessment of intrathecal injection of an American formulation of adenosine in humans. Anesthesiology 96:29–34

    Article  PubMed  CAS  Google Scholar 

  • Eisenach JC, Rauck RL, Curry R (2003) Intrathecal, but not intravenous adenosine reduces allodynia in patients with neuropathic pain. Pain 105:65–70

    Article  PubMed  CAS  Google Scholar 

  • Ekblom A, Segerdahl M, Sollevi A (1995) Adenosine increases the cutaneous heat pain threshold in healthy volunteers. Acta Anaesthesiol Scand 39:717–722

    PubMed  CAS  Google Scholar 

  • Esquisatto LCM, Costa SKP, Camargo EA, et al (2001) The plasma protein extravasation induced by adenosine and its analogues in the rat dorsal skin: evidence for the involvement of capsaicin sensitive primary afferent neurones and mast cells. Br J Pharmacol 134:108–115

    Article  PubMed  CAS  Google Scholar 

  • Federova IM, Jacobson MA, Basile A, et al (2003) Behavioral characterization of mice lacking the A3 receptor: sensitivity to hypoxic degeneration. Cell Mol Neurobiol 23:431–447

    Article  Google Scholar 

  • Fredholm BB, Ijzerman AP, Jacobson KA, et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552

    PubMed  CAS  Google Scholar 

  • Fredholm BB, Chen JF, Masino SA, et al (2005) Actions of adenosine at its receptors in the CNS: insights from knockouts and drugs. Annu Rev Pharmacol Toxicol 45:385–412

    Article  PubMed  CAS  Google Scholar 

  • Fu KY, Light AR, Maixner W (2000) Relationship between nociceptor activity, peripheral edema, spinal microglial activation and long-term hyperalgesia induced by formalin. Neuroscience 101:1127–1135

    Article  PubMed  CAS  Google Scholar 

  • Fukunaga AF, Alexander GE, Stark CW (2003) Characterization of the analgesic actions of adenosine: comparison of adenosine and remifentanil infusions in patients undergoing major surgical procedures. Pain 101:129–138

    Article  PubMed  CAS  Google Scholar 

  • Geiger JD, LaBella FS, Nagy JI (1984) Characterization and localization of adenosine receptors in rat spinal cord. J Neurosci 4:2303–2310

    PubMed  CAS  Google Scholar 

  • Gold MS, Reichling DB, Shuster MJ, et al (1996) Hyperalgesic agents increase a tetrodotoxin-resistant Na+ current in nociceptors. Proc Natl Acad Sci USA 93:1108–1112

    Article  PubMed  CAS  Google Scholar 

  • Golembiowska K, White TD, Sawynok J (1996) Adenosine kinase inhibitors augment release of adenosine from spinal cord slices. Eur J Pharmacol 307:157–162

    Article  PubMed  CAS  Google Scholar 

  • Gomes JA, Li X, Pan HL, et al (1999) Intrathecal adenosine interacts with a spinal noradrenergic system to produce antinociception in nerve-injured rats. Anesthesiology 91:1072–1079

    Article  PubMed  CAS  Google Scholar 

  • Green PG, Basbaum AI, Helms C, et al (1991) Purinergic regulation of bradykinin-induced plasma extravasation and adjuvant-induced arthritis in the rat. Proc Natl Acad Sci USA 88:4162–4165

    Article  PubMed  CAS  Google Scholar 

  • Haas HL, Selbach O (2000) Functions of neuronal adenosine receptors. Naunyn Schmiedebergs Arch Pharmacol 362:375–381

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SG, Wade A, McMahon SB (1999) The effects of inflammation and inflammatory mediators on nociceptive behaviour induced by ATP analogues in the rat. Br J Pharmacol 126:326–332

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SG, McMahon SB, Lewin GR (2001) Selective activation of nociceptors by P2X receptor agonists in normal and inflamed rat skin. J Physiol 534:437–445

    Article  PubMed  CAS  Google Scholar 

  • Hayashida M, Sato K, Fukunaga A, et al (2004) Intravenous infusion of adenosine 5′-triphosphate alleviated a disabling postherpetic neuralgia. J Anesth 18:36–38

    Article  PubMed  Google Scholar 

  • Hilliges M, Weidner C, Schmelz M, et al (2002) ATP responses in human C nociceptors. Pain 98:59–68

    Article  PubMed  CAS  Google Scholar 

  • Honore P, Burovita J, Chapman V, et al (1998) UP 202-56, an adenosine analogue, selectively acts via A1 receptors to significantly decrease noxiously-evoked spinal c-Fos protein expression. Pain 75:281–293

    Article  PubMed  CAS  Google Scholar 

  • Honore P, Kage K, Mijusa J, et al (2002) Analgesic profile of intrathecal P2X3 antisense oligonucleotide treatment in chronic inflammatory and neuropathic pain states in rats. Pain 99:11–19

    Article  PubMed  CAS  Google Scholar 

  • Hugel S, Schlichter R (2003) Convergent control of synaptic GABA from rat dorsal horn neurones by adenosine and GABA autoreceptors. J Physiol 551:479–489

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Tsuda M, Koizumi S (2005) ATP receptors in pain sensation: involvement of spinal microglia and P2X4 receptors. Purinerg Signal 1:95–100

    Article  CAS  Google Scholar 

  • Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine P2 receptors as drug targets. J Med Chem 45:4057–4093

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Kowaluk EA (2001) Pharmacological characterization of P2X3 homomeric and heteromeric channels in nociceptive signaling and behavior. Drug Dev Res 52:220–231

    Article  CAS  Google Scholar 

  • Jarvis MF, Burgard EC, McGaraughty S, et al (2002a) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors reduced chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci USA 99:17179–17184

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Mikusa J, Chu Kl, et al (2002b) Comparison of the ability of adenosine kinase inhibitors and adenosine receptor agonists to attenuate thermal hyperalgesia and reduce motor performance in rats. Pharmacol Biochem Behav 73:573–581

    Article  PubMed  CAS  Google Scholar 

  • Jarvis MF, Yu H, McGaraughty S, et al (2002c) Analgesic and anti-inflammatory effects of A-286501, a novel orally active adenosine kinase inhibitor. Pain 96:107–118

    Article  PubMed  CAS  Google Scholar 

  • Johansson B, Halldner L, Dunwiddie TV, et al (2001) Hyperalgesia, anxiety, and decreased hypoxic neuroprotection in mice lacking the adenosine A1 receptor. Proc Natl Acad Sci USA 98:9407–9412

    Article  PubMed  CAS  Google Scholar 

  • Kaelin-Lang A, Lauterburg T, Burgunder JM (1998) Expression of adenosine A2A receptor gene in rat dorsal root and autonomic ganglia. Neurosci Lett 246:21–24

    Article  PubMed  CAS  Google Scholar 

  • Kage K, Nifortos W, Zhu CZ, et al (2002) Alteration of dorsal root ganglion P2X3 receptor expression and function following spinal nerve ligation in the rat. Exp Brain Res 147: 511–519

    Article  PubMed  CAS  Google Scholar 

  • Keil GJ, DeLander GE (1994) Adenosine kinase and adenosine deaminase inhibition modulate spinal adenosine-and opioid agonist-induced antinociception in mice. Eur J Pharmacol 271:37–46

    Article  PubMed  CAS  Google Scholar 

  • Kennedy C, Assis TS, Currie AJ, et al (2003) Crossing the pain barrier: P2 receptors as targets for novel analgesics. J Physiol 553:683–694

    Article  PubMed  CAS  Google Scholar 

  • Khakh BS, Burnstock G, Kennedy C, et al (2001) International Union of Pharmacology. XXIV. Current status of the nomenclature and properties of P2X receptors and their subunits. Pharmacol Rev 53:107–118

    PubMed  CAS  Google Scholar 

  • Kim C, Chung JM, Chung K (2003) Changes in the gene expression of six subtypes of P2X receptors in rat dorsal root ganglion after spinal nerve ligation. Neurosci Lett 337:81–84

    Article  PubMed  CAS  Google Scholar 

  • Kowaluk EA, Jarvis MF (2000) Therapeutic potential of adenosine kinase inhibitors. Expert Opin Investig Drugs 9:551–564

    Article  PubMed  CAS  Google Scholar 

  • Kowaluk EA, Mikusa J, Wismer CT, et al (2000) ABT-702 (4-amino-5-(3-bromophenyl)-7-(6-morpholino-pyridin-3-yl)pyrido[2,3-dpyrimidine), a novel orally effective adenosine kinase inhibitor with analgesic and anti-inflammatory properties. II. In vivo characterization in the rat. J Pharmacol Exp Ther 295:1165–1174

    PubMed  CAS  Google Scholar 

  • Lao LJ, Kumamoto E, Luo C, et al (2001) Adenosine inhibits excitatory transmission to substantia gelatinosa neurons of the adult rat spinal cord through the activation of presynaptic A1 adenosine receptors. Pain 94:315–324

    Article  PubMed  CAS  Google Scholar 

  • Lavand’homme PM, Eisenach JC (1999) Exogenous and endogenous adenosine enhance the spinal antiallodynic effects of morphine in a rat model of neuropathic pain. Pain 80:31–36

    Article  PubMed  CAS  Google Scholar 

  • Ledent C, Vaugeois JM, Schiffmann SN, et al (1997) Aggressiveness, hypoalgesia and high blood pressure in mice lacking the adenosine A2A receptor. Nature 388:674–678

    Article  PubMed  CAS  Google Scholar 

  • Lee YW, Yaksh TL (1996) Pharmacology of the spinal adenosine receptor which mediates the antiallodynic action of intrathecal adenosine agonists. J Pharmacol Exp Ther 277:1642–1648

    PubMed  CAS  Google Scholar 

  • Liu XJ, Salter MW (2005) Purines and pain mechanisms: recent developments. Curr Opin Investig Drugs 6:65–75

    PubMed  Google Scholar 

  • Liu XJ, Sawynok J (2000) Peripheral antihyperalgesic effects by adenosine A1 receptor agonists and inhibitors of adenosine metabolism in a rat neuropathic painmodel. Analgesia 5:19–29

    CAS  Google Scholar 

  • Liu XJ, White TD, Sawynok J (2000) Potentiation of formalin-evoked adenosine release by an adenosine kinase inhibitor and an adenosine deaminase inhibitor in the rat hind paw: a microdialysis study. Eur J Pharmacol 408:143–152

    Article  PubMed  CAS  Google Scholar 

  • Liu XJ, White TD, Sawynok J (2001) Involvement of primary sensory afferents, postganglionic sympathetic nerves and mast cells in the formalin-evoked peripheral release of adenosine. Eur J Pharmacol 429:147–155

    Article  PubMed  CAS  Google Scholar 

  • Liu XJ, White TD, Sawynok J (2002) Intraplantar injection of glutamate evokes peripheral adenosine in the rat hind paw: involvement of peripheral ionotropic glutamate receptors and capsaicin-sensitive sensory afferents. J Neurochem 80:562–570

    Article  PubMed  CAS  Google Scholar 

  • Lynch ME, Clark AJ, Sawynok J (2003) Intravenous adenosine alleviates neuropathic pain: a double blind placebo controlled crossover trial using an enriched enrolment design. Pain 103:111–117

    Article  PubMed  CAS  Google Scholar 

  • Mauborgne A, Polienor H, Hamon M, et al (2002) Adenosine receptor-mediated control of in vitro release of pain-related neuropeptides from the rat spinal cord. Eur J Pharmacol 441:47–55

    Article  PubMed  CAS  Google Scholar 

  • McGaraughty S, Chu KL, Wismer CT, et al (2001) Effects of A-134974, a novel adenosine kinase inhibitor, on carrageenan-induced inflammatory hyperalgesia and locomotor activity in rats: evaluation of the sites of action. J Pharmacol Exp Ther 296:501–509

    PubMed  CAS  Google Scholar 

  • McGaraughty S, Wismer CT, Zhu CZ, et al (2003) Effects of A-317491, a novel and selective P2X3/P2X2/3 receptor antagonist, on neuropathic, inflammatory and chemogenic nociception following intrathecal and intraplantar administration. Br J Pharmacol 140:1381–1388

    Article  PubMed  CAS  Google Scholar 

  • McGaraughty S, Cowart M, Jarvis MF, et al (2005) Anticonvulsant and antinociceptive actions of novel adenosine kinase inhibitors. Curr Top Med Chem 5:43–58

    Article  PubMed  CAS  Google Scholar 

  • Molliver DC, Cook SP, Carlsten JA, et al (2002) ATP and UTP excite sensory neurons and induce CREB phosphorylation through the metabotropic receptor, P2Y2. Eur J Neurosci 16:1850–1860

    Article  PubMed  Google Scholar 

  • Moriyama M, Kitamura A, Ikezaki H, et al (2004) Systemic ATP infusion improves spontaneous pain and tactile allodynia, but not tactile hyperesthesia, in patients with postherpetic neuralgia. J Anesth 18:177–180

    Article  PubMed  Google Scholar 

  • Moriyama T, Iida T, Kobayashi K, et al (2003) Possible involvement of P2Y2 metabotropic receptors in ATP-induced transient receptor potential vanilloid receptor 1-mediated thermal hypersensitivity. J Neurosci 23:6058–6062

    PubMed  CAS  Google Scholar 

  • Nakamura F, Strittmatter SM (1996) P2Y1 purinergic receptors in sensory neurons: contribution to touch-induced impulse generation. Proc Natl Acad Sci USA 93:10465–10470

    Article  PubMed  CAS  Google Scholar 

  • North RA (2002) Molecular physiology of P2X receptors. Physiol Rev 82:1013–1067

    PubMed  CAS  Google Scholar 

  • Ohta A, Sitkovsky M (2001) Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature 414:916–920

    Article  PubMed  CAS  Google Scholar 

  • Park SK, Chung K, Chung JM (2000) Effects of purinergic and adrenergic antagonists in a rat model of painful peripheral neuropathy. Pain 87:171–179

    Article  PubMed  CAS  Google Scholar 

  • Patel MK, Pinnock RD, Lee K (2001) Adenosine exerts multiple effects in dorsal horn neurones of the adult rat spinal cord. Brain Res 920:19–26

    Article  PubMed  CAS  Google Scholar 

  • Paukert M, Osteroth R, Geisler HS, et al (2001) Inflammatory mediators potentiate ATP-gated channels through the P2X3 subunit. J Biol Chem 276:21077–21082

    Article  PubMed  CAS  Google Scholar 

  • Poon A, Sawynok J (1998)Antinociception by adenosine analogs and inhibitors of adenosine metabolism in an inflammatory thermal hyperalgesia model in the rat. Pain 74:235–246

    Article  PubMed  CAS  Google Scholar 

  • Rabchevsky AG, Degos JD, Dreyfus PA (1999) Peripheral injections of Freund’s adjuvant in mice provoke leakage of serum proteins through the blood-brain barrier without inducing reactive gliosis. Brain Res 832:84–96

    Article  PubMed  CAS  Google Scholar 

  • Rae CP, Mansfield MD, Dryden C, et al (1999) Analgesic effect of adenosine on ischaemic pain in human volunteers. Br J Anaesth 82:427–428

    PubMed  CAS  Google Scholar 

  • Rane K, Segerdahl M, Goiny M, et al (1998) Intrathecal adenosine administration. A phase I clinical safety study in healthy volunteers, with additional evaluation of its influence on sensory thresholds and experimental pain. Anesthesiology 89:1108–1115

    Article  PubMed  CAS  Google Scholar 

  • Rane K, Sollevi A, Segerdahl M (2000) Intrathecal adenosine administration in abdominal hysterectomy lacks analgesic effect. Acta Anaesthesiol Scand 44:868–872

    Article  PubMed  CAS  Google Scholar 

  • Regaya I, Pham T, Andretti N, et al (2004) Small conductance calcium-activated K + channels, SkCa, but not voltage-gated K+ (Kv) channels, are implicated in the antinociception induced by CGS21680, a A2A adenosine receptor agonist. Life Sci 76:367–377

    Article  PubMed  CAS  Google Scholar 

  • Ruan HZ, Burnstock G (2003) Localisation of P2Y1 and P2Y4 receptors in dorsal root, nodose and trigeminal ganglia of the rat. Histochem Cell Biol 120:415–426

    Article  PubMed  CAS  Google Scholar 

  • Salter MW, Sollevi A (2001) Roles of purines in nociception. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology, vol 151. Springer, Berlin Heidelberg New York, pp 371–401

    Google Scholar 

  • Salvatore CA, Tilley SL, Latour AM, et al (2000) Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J Biol Chem 275:4429–4434

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J (1998) Adenosine receptor activation and nociception. Eur J Pharmacol 347:1–11

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Liu XJ (2003) Adenosine in the spinal cord and periphery: release and regulation of pain. Prog Neurobiol 69:313–340

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A (1997) Peripheral adenosine 5′-triphosphate enhances nociception in the formalin test via activation of purinergic P2X receptors. Eur J Pharmacol 330:115–121

    Article  PubMed  CAS  Google Scholar 

  • Sawynok J, Reid A, Poon A (1998) Peripheral antinociceptive and anti-inflammatory properties of an adenosine kinase inhibitor and an adenosine deaminase inhibitor. Eur J Pharmacol 384:123–138

    Google Scholar 

  • Sawynok J, Reid A, Liu XJ (2000) Involvement of mast cells, sensory afferents and sympathetic mechanisms in paw oedema induced by adenosine A1, A2B/3 receptor agonists. Eur J Pharmacol 395:47–50

    Article  PubMed  CAS  Google Scholar 

  • Schulte G, Robertson B, Fredholm BB, et al (2003)Distribution of antinociceptive adenosine A1 receptors in the spinal cord dorsal horn, and relationship to primary afferents and neuronal subpopulations. Neuroscience 121:907–916

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl M, Sollevi A (1998) Adenosine and pain relief: a clinical overview. Drug Dev Res 45:151–158

    Article  CAS  Google Scholar 

  • Segerdahl M, Ekblom A, Sollevi A (1994) The influence of adenosine, ketamine, and morphine on experimentally induced ischemic pain in healthy volunteers. Anesth Analg 79:787–791

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl M, Ekblom A, Sandelin K, et al (1995a) Peroperative adenosine infusion reduces the requirements for isoflurane and postoperative analgesics. Anesth Analg 80:1145–1149

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl M, Ekblom A, Sjölund KF, et al (1995b) Systemic adenosine attenuates touch evoked allodynia induced by mustard oil in humans. NeuroReport 6:753–756

    Article  PubMed  CAS  Google Scholar 

  • Segerdahl M, Persson E, Ekblom A, et al (1996) Peroperative adenosine infusion reduces isoflurane concentrations during general anesthesia for shoulder surgery. Acta Anaesthesiol Scand 40:792–797

    PubMed  CAS  Google Scholar 

  • Segerdahl M, Irestedt L, Sollevi A (1997) Antinociceptive effect of perioperative adenosine infusion in abdominal hysterectomy. Acta Anaesthesiol Scand 41:473–479

    Article  PubMed  CAS  Google Scholar 

  • Sim JA, Young MT, Sung HY, et al (2004) Reanalysis of P2X7 receptor expression in rodent brain. J Neurosci 24:6307–6314

    Article  PubMed  CAS  Google Scholar 

  • Sjölund KF, Sollevi A, Segerdahl M, et al (1997) Intrathecal adenosine analog administration reduces substance P in cerebrospinal fluid along with behavioral effects that suggest antinociception in rats. Anesth Analg 85:627–632

    Article  PubMed  Google Scholar 

  • Sjölund KF, Segerdahl M, Sollevi A (1999) Adenosine reduces secondary hyperalgesia in two human models of cutaneous inflammatory pain. Anesth Analg 88:605–610

    Article  PubMed  Google Scholar 

  • Sjölund KF, Belfrage M, Karlsten R, et al (2001) Systemic adenosine infusion reduces the area of tactile allodynia in neuropathic pain following peripheral nerve injury: amulti-centre, placebo-controlled study. Eur J Pain 5:199–207

    Article  PubMed  Google Scholar 

  • Sorkin LS, Maruyama K, Boyle DL, et al (2003) Spinal adenosine agonist reduces c-fos and astrocyte activation in dorsal horn of rats with adjuvant-induced arthritis. Neurosci Lett 340:119–122

    Article  PubMed  CAS  Google Scholar 

  • Sosnowski M, Yaksh TL (1989) Role of spinal adenosine receptors in modulating the hyperesthesia produced by spinal glycine receptor antagonism. Anesth Analg 69:587–592

    Article  PubMed  CAS  Google Scholar 

  • Stucky CL, Medler KA, Molliver DC (2004) The P2Y agonist UTP activates cutaneous afferent fibers. Pain 109:36–44

    Article  PubMed  CAS  Google Scholar 

  • Sullivan GW, Linden J (1998) Role of A2A adenosine receptors in inflammation. Drug Dev Res 45:103–112

    Article  CAS  Google Scholar 

  • Taiwo YO, Levine JD (1990) Direct cutaneous hyperalgesia induced by adenosine. Neuroscience 38:757–762

    Article  PubMed  CAS  Google Scholar 

  • Tominaga M, Wada M, Masu M (2001) Potentiation of capsaicin receptor activity by metabotropic ATP receptors as a possible mechanism for ATP-evoked pain and hyperalgesia. Proc Natl Acad Sci USA 98:6951–6956

    Article  PubMed  CAS  Google Scholar 

  • Tsuda M, Koizumi A, Shigemoto Y, et al (2000) Mechanical allodynia caused by intraplantar injection of P2X receptor agonist in rats: involvement of heteromeric P2X2/3 receptor signaling in capsaicin-insensitive primary afferent neurons. J Neurosci 20:1–9

    Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Article  PubMed  CAS  Google Scholar 

  • Tsuzuki K, Kondo E, Fukuoka T, et al (2001) Differential regulation of P2X3mRNA expression by peripheral nerve injury in intact and injured neurons in the rat sensory ganglia. Pain 91:351–360

    Article  PubMed  CAS  Google Scholar 

  • Waldron JB, Sawynok J (2004) Peripheral P2X receptors and nociception: interactions with biogenic amine systems. Pain 110:79–89

    Article  PubMed  CAS  Google Scholar 

  • Watkins LR, Maier SF (2002) Beyond neurons: evidence that immune and glial cells contribute to pathological pain states. Physiol Rev 82:981–1011

    PubMed  CAS  Google Scholar 

  • Wu WP, Hao JX, Halldner-Henricksson L, et al (2002) Decreased inflammatory pain due to reduced carrageenan-induced inflammation in mice lacking adenosine A3 receptors. Neuroscience 114:523–527

    Article  PubMed  CAS  Google Scholar 

  • Wu WP, Hao JX, Halldner L, et al (2005) Increased nociceptive response in mice lacking the adenosine A1 receptor. Pain 113:395–404

    Article  PubMed  CAS  Google Scholar 

  • Wu Y, Willcockson HH, Maixner W, et al (2004) Suramin inhibits spinal cord microglial activation and long-term hyperalgesia induced by formalin injection. J Pain 5:48–55

    Article  PubMed  CAS  Google Scholar 

  • Xiao HS, Huang QH, Zhang FX, et al (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci USA 99:8360–8365

    Article  PubMed  CAS  Google Scholar 

  • Xu GY, Huang LYM (2002) Peripheral inflammation sensitizes P2X receptor-mediated responses in rat dorsal root ganglion neurons. J Neurosci 22:93–102

    PubMed  CAS  Google Scholar 

  • Yamamoto S, Nakanishi O, Matsui T, et al (2003) Intrathecal adenosine A1 receptor agonist attenuates hyperalgesia without inhibiting spinal glutamate release in the rat. Cell Mol Neurobiol 23:175–185

    Article  PubMed  CAS  Google Scholar 

  • Yang L, Zhang FX, Huang F, et al (2004) Peripheral nerve injury induces trans-synaptic modification of channels, receptors and signal pathways in rat dorsal spinal cord. Eur J Neurosci 19:871–883

    Article  PubMed  Google Scholar 

  • Zárate E, Sá Rêgo MM, White PF, et al (1999) Comparison of adenosine and remifentanil infusions as adjuvants to desflurane anesthesia. Anesthesiology 90:956–963

    Article  PubMed  Google Scholar 

  • Zhou J, Chung K, Chung JM(2001) Development of purinergic sensitivity in sensory neurons after peripheral nerve injury in the rat. Brain Res 915:161–169

    Article  PubMed  CAS  Google Scholar 

  • Zhu CZ, Mikusa J, Chu KL, et al (2001) A-134974: a novel adenosine kinase inhibitor, relieves tactile allodynia via spinal sites of action in peripheral nerve injured rats. Brain Res 905:104–110

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sawynok, J. (2006). Adenosine and ATP Receptors. In: Stein, C. (eds) Analgesia. Handbook of Experimental Pharmacology, vol 177. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-33823-9_11

Download citation

Publish with us

Policies and ethics